Lösung Aufgabe 4.01 SoSe 2018

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 4.01 SoSe 2018

Wir betrachten das folgende Modell \mathbb{M}:=(\mathbb{P}, \mathbb{G}, \operatorname{inz}) für die Inzidenzgeometrie:
Modellpunkte \mathbb{P}:
\mathbb{P} := \{A,B,C,D\}
Modellgeraden \mathbb{G}:
\mathbb{G} = \{\{A,B\}, \{A,C\}, \{A,D\}, \{B,C\}, \{B,D\}\}
Inzidenz \operatorname{inz}:
Elementbeziehung: Ein Punkt P inzidiert mit einer Geraden g , wenn er zu g gehört: P \operatorname{inz} g :\Leftrightarrow P \in g

  1. Warum ist \mathbb{M} kein Modell für die ebene Inzidenzgeometrie?
  2. Ergänzen Sie \mathbb{M} derart, dass alle Axiome der ebenen Inzidenz erfüllt sind.

Lösung 1

1. Da das Modell \mathbb{M} nicht vollständig ist.


2. \mathbb{M}:=(\mathbb{P}, \mathbb{G}, \operatorname{inz}) für die Inzidenzgeometrie:

Modellpunkte \mathbb{P}:
\mathbb{P} := \{A,B,C,D\}

Modellgeraden \mathbb{G}:
\mathbb{G} = \{\{A,B\}, \{A,C\}, \{A,D\}, \{B,C\}, \{B,D\}, \{C,D\}\}

Inzidenz \operatorname{inz}

Lösung 2

Lösung 3