Lösung von Aufgabe 13.3P (WS 17 18)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Dargestellt ist hier die Nacheinanderausführung zweier Abbildungen \varphi_1 und \varphi_2, mit \varphi_1\left( \overline{ABC} \right) = \overline{A'B'C'} und \varphi_2\left( \overline{A'B'C'} \right) = \overline{A''B''C''}.

Aufg13.3.jpg

  1. Um welche Arten von Abbildungen handelt es sich bei \varphi_1 und \varphi_2?
  2. Zeichnen Sie jeweils für \varphi_1 und \varphi_2 die passende Anzahl von Spiegelachsen in die Skizze ein.
  3. Wir betrachten nun die Verkettung \varphi_1\circ \varphi_2 . Durch welche Ersatzabbildung kann diese Verkettung \varphi_1\circ \varphi_2 ersetzt werden? (Begründen Sie Ihre Entscheidung).
  4. Zeichnen Sie die Achsen der Ersatzabbildung in die Skizze oben ein. Hinweis: Sie dürfen das Gitter im Hintergrund als Orientierung nutzen.