Lösung von Aufgabe 13.3P (WS 18/19)
Aus Geometrie-Wiki
Beweisen Sie die Umkehrung des Wechselwinkelsatzes mit abbildungsgeometrischen Methoden. Hinweis: Der Wechselwinkelsatz ist bereits bewiesen.
Vor: Wechselwinkel sind gleich groß; Beh: => Geschnittene Seiten sind parallel
1.) mit {A} = g geschnitten h und B ε g und C ε h
2.) DH,180 () = mit H ε h und A' ε h - Def. Punktspiegelung
3.) |α| = |α'| mit|α|= |<(BAC)| und |α'|= |<(B'A'C')| - Winkelmaßerhaltung, Vor: α und α' sind Wechselwinkel
4.) A = g geschnitten h => A' = g' geschnitten h' - Eigenschaft Spiegelung
5.) H ε h => h = h' und g' = DH,180(g) => g || g' - Eigenschaft Punktspiegelung (Parallelenerzeugung)
Die Behauptung gilt.--CIG UA (Diskussion) 13:47, 25. Jan. 2019 (CET)