Lösung von Aufgabe 4.2 (WS 19 20)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Satz: In einem Dreieck \overline{ABC} mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander.

a) Welcher Beweis ist korrekt? Begründen Sie ausführlich! (Der Basiswinkelsatz und seine Umkehrung seien bereits bewiesen.)

Beweis 1) Sei \overline{ABC} ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen.

Beweis 2) Sei \overline{ABC} ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.

beide Korrekt? - einmal direkter, einmal indirekter Beweis? --Emiliam (Diskussion) 13:14, 8. Nov. 2019 (CET)

Schau dir den ersten Beweis noch einmal genau an. 
Kann man mit dem BWS den Beweis begründen?--Tutorin Laura (Diskussion) 20:13, 9. Nov. 2019 (CET)


b) Beweisen Sie den Satz indirekt mit Widerspruch.

Beweis 3)
Sei \overline{ABC} ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
An: |α| = |β|
Bew:
1) Dreieck ist gleichschenklig (Annahme, Basiswinkelsatz)
2) |AC| = |BC| (1), Basiswinkelsatz)

(Begründung: Umkehrung BWS) --Tutorin Laura (Diskussion) 20:13, 9. Nov. 2019 (CET)

3) Widerspruch zur Voraussetzung (2), Voraussetzung)
q.e.d.

--Emiliam (Diskussion) 13:04, 8. Nov. 2019 (CET)