Lösung von Zusatzaufgabe 2.5P (SoSe 16)
Aus Geometrie-Wiki
Welche Definition für Kreis ist richtig? Warum (nicht)?
- Sei
ein Punkt und
eine Menge, deren Elemente Punkte sind. Wenn gilt:
ist konstant, so ist
ein Kreis mit Mittelpunkt
.
- Sei
ein Punkt und
eine Punktmenge. Wenn gilt:
, dann ist
ein Kreis.
- Sei
ein Punkt in der Ebene
und
eine Punktmenge. Wenn
alle Punkte
enthält für die gilt∶
und
, dann ist
ein Kreis mit dem Mittelpunkt
.
- Sei
ein Punkt in der Ebene
und
eine Punktmenge. Wenn
genau alle Punkte
enthält für die gilt∶
und
, dann ist
ein Kreis mit dem Mittelpunkt
.
- Sei
ein Punkt in der Ebene
und
eine Menge, deren Elemente Punkte sind. Wenn für alle
gilt∶
, dann ist
ein Kreis.
- Sei
ein Punkt und
eine Menge, deren Elemente Punkte sind. Alle Elemente von
liegen in ein und derselben Ebene wie
. Wenn gilt:
ist konstant, so ist
ein Kreis mit Mittelpunkt
.
Definitionen eins und zwei sind keine Definitionen für einen Kreis, da diese nicht beschreiben, wo die Punkte liegen. Die Menge aller Punkte P und der Punkt M können in unterschiedlichen Ebenen liegen.
Definition drei ist meiner Meinung nach eine korrekte Definition.
--Lili S (Diskussion) 13:01, 3. Mai 2016 (CEST)
Was meinen die Anderen? --Schnirch (Diskussion) 13:29, 9. Mai 2016 (CEST)