Sehnenviereck SS 12

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Definitionen

Kreissehne

1. Es sei \ k ein Kreis. Eine Sehne des Kreises ist jede Strecke, deren Anfangs- und Endpunkte Element des Kreises \ k sind.

2. ..........

Durchmesser

1. Es sei \ k ein Kreis mit dem Mittelpunkt \ M . Ferner seien \ A und \ B zwei Punkte des Kreises \ k. Ein Durchmesser ist die Strecke \overline {AB}, für die gilt  \operatorname{Zw} \left( A, M, B\right)\wedge A,B\in \ k.


Radius

1. Es sei \ k ein Kreis mit dem Mittelpunkt \ M . Jede Strecke, die den Anfangspunkt in \ M und den Endpunkt in einem beliebigen Punkt des Kreises \ k hat, nennt man Radius.

Erarbeitung des Begriffs Sehnenviereck

Sehnenvierecke.pdf

Sehnenviereck

Ein Viereck, dessen Seiten Sehnen ein und desselben Kreises k sind, heißt Sehnenviereck.

Sätze

Satzfindung

sehr speziell: Quadrate

Jedes Quadrat hat einen Umkreis und ist somit ein Sehnenviereck.

Quadrat als Sehnenviereck.png


weniger speziell, aber immer noch ziemlich speziell: Rechtecke

Jedes Rechteck ist ein Sehnenviereck.

noch allgemeiner, aber immer noch ziemlich speziell: gleichschenklige Trapeze

Jedes gleichschenklige Trapez ist ein Sehnenviereck.

allgemeines Sehnenviereck

Ausgangslage: \ \overline{ABCD} ist ein gleichschenkliges Trapez.

Arbeitsauftrag: Bewegen Sie den Punkt \ C auf dem Kreis. Beobachten Sie, wie sich der rote und der blaue Winkel verändern. Was vermuten Sie bezüglich der Größe von \ \gamma? Was vermuten Sie hinsichtlich der Größen der gegenüberliegenden Winkel im Sehnenviereck?


Der Satz über die gegenüberliegenden Winkel im Sehnenviereck

Satz 1

In jedem Sehnenviereck sind die gegenüberliegenden Winkel supplementär.

--Oz44oz 20:32, 18. Jul. 2012 (CEST)

Satz 2 : Die Umkehrung vom Satz 1

Wenn in einem Viereck die gegenüberliegenden Winkel supplementär sind, dann ist das Viereck ein Sehnenviereck.

Kriterium

Ein Viereck ist .........

Beweise

wir wissen

--Oz44oz 22:55, 17. Jul. 2012 (CEST)

zu zeigen:

--Oz44oz 23:03, 17. Jul. 2012 (CEST)

Beweis vom Satz 1

Beweis 1 Beweis 2 Beweis 3
Sehnenviereck Beweis 1.png Sehnenviereck Beweis 2.png Sehnenviereck Beweis 3.png
Beweisen Sie |\beta| + |\delta| = 180° Beweisen Sie |\beta| + |\delta| = 180° Beweisen Sie |\beta| + |\delta| = 180°

--Oz44oz 19:19, 16. Jul. 2012 (CEST)


Voraussetzung:


Behauptung:

Beweis 1:

Beweis vom Satz 2

Beweis 1 Beweis 2
Sehnenviereck Beweis Umkehrung 1.png Sehnenviereck Beweis Umkehrung 2.png
Annahme: D liegt .. Annahme: D liegt ..

--Oz44oz 19:15, 16. Jul. 2012 (CEST)

Voraussetzung:


Behauptung:


Annahme:

Beweis 1:

Funktionale Betrachtung

--Oz44oz 22:47, 16. Jul. 2012 (CEST)


--Oz44oz 22:45, 17. Jul. 2012 (CEST)