Strecken und Halbgeraden SoSe 2018

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Strecken, intuitiv

Punkte, Geraden und Ebenen können wir in unserer Geometrie nicht definieren. Für Strecken wird uns das gelingen.

Eine intuitive Vorstellung von Strecken haben wir schon: Eine Strecke ist die kürzeste Verbindung zwischen zwei Punkten. Diese Vorstellung gilt es nun zu präzisieren.

Grundlegend dafür, um was für eine konkrete Strecke es sich jeweils handelt scheint die Angabe zweier Punkte zu sein (kürzeste Verbindung zweier Punkte).

Das Attribut kürzeste deutet auf das Messen von Längen hin. Das Messen von Längen wird dann auch der Knackpunkt bezüglich einer Definition des Begriffs der Strecke sein.

Längenmessung

Messen: Andere Länder andere Sitten

Rory, ein irischer Schüler, wechselt für ein Jahr an die IGH im Hasenleiser. Die Beibehaltung gewisser Gewohnheiten aus Irland könnte für Rory in Deutschland Probleme mit sich bringen: In Irland schmeckt das Guinness besser und vor allem wird es in der Maßeinheit Pint ausgeschenkt. Ein Pint ist etwas mehr als ein halber Liter: 0,56826125 l.

Rory ist ein sehr ordentlicher Schüler und hat sein Schullineal aus Irland mitgebracht. Zum Messen würde dieses in Deutschland allerdings nur dann etwas nützen, wenn es über eine zweite Skale in cm verfügen würde.

Die Idee der Längenmessung

Strecken werden bereits in Klasse 1 gemessen. Was ist das eigentlich, das Messen von Strecken. Wie würden Sie es den Schülern der Klassenstufen für die Sie ausgebildet werden erklären? Ergänzen Sie hier: ...

Der Abstand zweier Punkte

Die ersten beiden Abstandsaxiome

Axiom II.1: (Abstandsaxiom)
Zu je zwei Punkten A und B gibt es eine eindeutig bestimmte nicht negative reelle Zahl d mit d=0:\Leftrightarrow A=B.
Definition II.1: (Abstand)
Der Abstand zweier Punkte A und B ist die Zahl, die nach dem Abstandsaxiom den Punkten A und B zugeordnet werden kann.
Schreibweise: d=|AB|.

Axiom II.2:
Für zwei beliebige Punkte A und B gilt |AB| = |BA|.

Die Dreiecksungleichung

Schüler entdecken die Dreiecksungleichung

Dreieckskonstruktionen sind seit jeher fester Bestandteil des Geometrieunterrichts in der Schule. Neben solchen allgemeinen Zielen wie Erziehung zur Exaktheit und Sauberkeit bei Konstruktionen, geht es bei diesen Aufgaben auch darum, dass die Schüler die Gesetzmäßigkeiten ihrer Umwelt durch eigene Tätigkeit selbst erfahren.

Die einfachsten Dreieckskonstruktionen sind die, bei denen die Längen der drei Seiten eines Dreiecks gegeben sind. In der Sprache der Abstände: Alle drei Abstände die die Eckpunkte des Dreiecks zueinander haben sind gegeben.

Abstände sind nach dem Abstandsaxiom reelle Zahlen. (Maßeinheiten wie m und cm sind in der „reinen“ Mathematik irrelevant.)


Der Lehrer, der Konstruktionsaufgaben auf das eigentliche Generieren einer Zeichnung durch die Schüler reduziert, verschenkt eine Reihe von Potenzen hinsichtlich verschiedenster Ziele des Mathematikunterrichts. Stellvertretend sei in diesem Zusammenhang das Begründen genannt.

Aus didaktischer Sicht werden Konstruktionsaufgaben zu einem bestimmten Problemkreis erst dann vollständig, wenn die Schüler sich sowohl mit Aufgaben mit mehreren Lösungsmöglichkeiten als auch mit unlösbaren Aufgaben auseinandersetzen müssen.

Experimentieren Sie mit dem folgenden Geogebraapplet und klassifizireren Sie die Typen von Konstruktionsaufgaben, die sich für Dreieckskonstruktionen nach SSS ergeben:

Das Axiom der Dreiecksungleichung

Axiom II.3: (Dreiecksungleichung)
\text{Für drei beliebige Punkte } A, B \text{ und } C \text{gilt: } \vert AB \vert + \vert BC \vert \geq \vert AC \vert.
\text{Falls }\operatorname{koll}(ABC)\text{, dann ist eine der folgenden Gleichungen erfüllt:}

\begin{matrix}
&& (1) & \vert AB \vert & + &  \vert BC \vert & = & \vert AC \vert \\
&& (2) & \vert AC \vert & + &  \vert CB \vert & = & \vert AB \vert \\
&& (3) & \vert BA \vert & + &  \vert AC \vert & = & \vert BC \vert \\
\end{matrix}
\text{Ist umgekehrt eine dieser drei Gleichungen erfüllt, so sind } A, B \text{ und }C\text{ kollinear.}

Definitionen und Sätze

Definition II.2: (Zwischenrelation)
Ein Punkt  B liegt zwischen zwei Punkten  A und  C, wenn  | AB | + | BC | = | AC | gilt und der Punkt  B sowohl von  A als auch von  C verschieden ist.
Schreibweise:  \operatorname{Zw} ( A, B, C )

Unmittelbar einsichtig sind die folgenden beiden Sätze:

Satz II.1
Aus  \operatorname{Zw} ( A, B, C ) folgt  \operatorname{Zw} ( C, B, A ) .
Beweis von Satz II.1
Beweis: trivial (Der Leser überzeuge sich davon.)
Beweis auch mit Axiom II. 2, da

zu zeigen: ZW(A,B,C) = ZW(C,B,A)

... Das ist nicht schwer. Schreiben Sie hier Ihre Beweise rein.

Satz II.2:
Aus  \operatorname{Zw} ( A, B, C ) folgt  \operatorname{koll} ( A, B, C ) .
Beweis von Satz II.2
Beweis: trivial (Der Leser überzeuge sich davon.)


Satz II.3
Es sei  \operatorname{koll} ( A, B, C ) mit  A, B, C sind paarweise verschieden.
Dann gilt liegt genau einer der drei Punkte A, B, C zwischen den beiden anderen.
Beweis von Satz II.3:

Wir haben den Beweis in der Übung am 18. Mai geführt. Üben Sie das Aufschreiben derartiger Beweise noch einmal hier. Schreiben Sie hier Ihre Beweise rein. Sie können nichts kaputt machen.

Beweis von

Existenz:


Eindeutigkeit:

Der Begriff der Strecke

Definition II.3: (Strecke, Endpunkte einer Strecke)
Es seien  A und  B zwei verschiedene Punkte.  A und  B heißen die Endpunkte der Strecke \overline{AB}.

Unter der Strecke \overline{AB} versteht man folgende Punktmenge:

\overline{AB} := \{P \vert ... \} <-ergänzen Sie selbst

Definition II.4: (Länge einer Strecke)
Es seien  A und  B zwei verschiedene Punkte. A und B heißen die Endpunkten der Strecke \overline{AB}. Unter der Länge \vert \overline{AB} \vert der Strecke \overline{AB} versteht man den Abstand ihrer Endpunkte. \vert \overline{AB} \vert:= \vert AB \vert

Halbgeraden bzw. Strahlen

Definition II.5: (Halbgerade, bzw. Strahl)
Definition: Halbgerade AB^{+} (ergänzen Sie)
Eine Halbgerade AB^{+} ist die Menge der Punkte der Strecke \overline{AB} vereinigt mit der Menge aller Punkte  P für die gilt :...


Definition: Halbgerade AB^{-} (ergänzen Sie)
Eine Halbgerade  AB^{-} ist ...
Satz II.4
Es sei  O ein Punkt der Geraden  g.
Die Teilmengen  \ OA^+ \setminus \left\{ O \right\},  \left\{ O \right\} und  \ OA^- \setminus \left\{ O \right\} bilden eine Klasseneinteilung der Geraden  g.
Beweis von Satz II.4

Sie müssen insbesondere Folgendes zeigen:


\begin{matrix} 
&& (1) & OA^+ \setminus \left\{ O \right\} \cap \ OA^- \setminus \left\{ O \right\} & = & \emptyset \\
&& (2) &OA^+ \setminus \left\{ O \right\} \cup \left\{ O \right\} \cup \ OA^- \setminus \left\{ O \right\} &=& g
\end{matrix}