Tut Aufgabe 8.2.(SoSe 11)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Im Tutorium (von Tutorin_Anne) fragten wir uns heute, wie genau ein Beweis geführt werden muss.
Hier mal eine sehr kleinschrittige Aufführungen:


Satz: Es existieren min. 6 paarweise verschiedene Geraden.

Vor.: geltende Inzidenzaxiome
Beh.: A. Es existieren 6 Geraden und B. diese sind paarweise verschieden.

A.

Beweisschritt Begründung
1) Es gibt vier Punkte A,B,C,D,
für die gilt nkomp(A,B,C,D).
Axiom I.7
2) Es exisiteren folgende Geraden:
AB, BC, CD, DA, AC, BD
Axiom I.1 und 1)

B. indirekter Beweis
Annahme: Wir nehmen an,(min.) zwei Geraden sind identisch. o.B.d.A AB=BC

Beweisschritt Begründung
1) koll(A,B,C) Annahme, Def. kollinear
2) Es exisitert eine Ebene E,
die A,B und D enthält.
Axiom I,4 und nkoll (A,B,D)*
3) C \in AB 1)
4) C \in E 2) und 3) Axiom I.5
5) komp (A,B,C,D) 2) und 4) Def. komplanar
Widerspruch zum Schritt A.1 Die Annahme ist zu verwerfen!
  • oder falls koll(A,B,D)
Beweisschritt Begründung
1) koll(A,B,C) und koll (A,B,D) Fall2
2) koll (A,B,C,D) 1)
3) Es exisitert ein Punkt F für den gilt: nkoll(A,B,F) I.3
4) Es existiert ein Ebene H, die A,B,F enthält. Axiom I.4
5) C,D \in H 2) und 4)
6) komp (A,B,C,D) 2) und 4)
Widerspruch zum Schritt A.1 Die Annahme ist zu verwerfen!

Es exisiteren 6 paarweise verschiedene Geraden. q.e.d.

Die Fragen waren nun: Reicht es denn 3.Teil mit trivial abzustempeln? NEIN
Es muss für einen korrekten vollständigen Beweis so vorgegangen werden, allerdings wird ein so verschachtelter und ausführlicher Beweis nicht in der Klausur abgefragt. Trotzdem ist er eine gute Übung, um beweisen an sich zu lernen. (Antwort nach Rücksprache mit Herr Schnirch)--Tutorin Anne 12:34, 11. Jun. 2011 (CEST)