Winkelmessung (SoSe 11)
Inhaltsverzeichnis |
Das Winkelmaß
Was bedeutet es, die Größe eines Winkels zu messen?
Länge einer Strecke | Größe eines Winkels |
nichtnegative reelle Zahl | reelle Zahl zwischen 0 und 180 |
Das Winkelmaßaxiom
Axiom IV.1 (Winkelmaßaxiom)
- Zu jedem Winkel
gibt es genau eine reelle Zahl
zwischen 0 und 180.
- Zu jedem Winkel
Definition V.5: (Größe eines Winkels)
- Die Zahl
, die entsprechend des Winkelmaßaxioms einem jeden Winkel
eindeutig zugeordnet werden kann, wird die Größe oder das Maß von
genannt.
In Zeichen:.
- Die Zahl
Winkelkonstruktion
Existenz und Eindeutigkeit des Winkelantragens
Axiom IV.2: (Winkelkonstruktionsaxiom)
- Es sei
eine Gerade in der Ebene
. Zu jeder reellen Zahl
mit
gibt es in jeder der beiden durch
bestimmten Halbebenen der Ebene
genau einen Strahl
mit
- Es sei
Winkeladdition
Axiom IV.3: (Winkeladditionsaxiom)
- Wenn der Punkt
zum Inneren des Winkels
gehört , dann gilt
.
- Wenn der Punkt
Satz V.2
- Wenn der Punkt
im Inneren des Winkels
und nicht auf einem der Schenkel des Winkels
liegt, dann ist die Größe der beiden Teilwinkel
und
jeweils kleiner als die Größe des Winkels
.
- Wenn der Punkt
Beweis von Satz V.2
Rechte Winkel
Definition V.6 : (Rechter Winkel)
- Wenn ein Winkel die selbe Größe wie einer seiner Nebenwinkel hat, so ist er ein rechter Winkel.
Definition V.7 : (Supplementärwinkel)
- Zwei Winkel heißen supplementär, wenn die Summe ihrer Größen 180 beträgt.
Axiom IV.4: (Supplementaxiom)
- Nebenwinkel sind supplementär.
Satz V.3 : (Existenz von rechten Winkeln)
- Es gibt rechte Winkel.
Beweis von Satz V.3 :
Wir haben zu zeigen, dass wenigstens ein rechter Winkel existiert.
Nach Definition V.6 ist ein rechter Winkel ein solcher, der das selbe Maß wie einer seiner Nebenwinkel hat.
Das Supplementaxiom (Axiom IV.4) besagt, dass die Summe der Größen zweier Nebenwinkel in jedem Fall 180 beträgt.
Wenn es denn einen rechten Winkel gäbe, so müsste dessen Maß die Hälfte von 180 sein.
Wenn es uns gelänge nachzuweisen, dass es einen Winkel der Größe 90 gibt, so wären wir eigentlich mit unserem Beweis fertig.
In der Tat gibt es einen derartigen Winkel: Das Axiom IV.2 (Winkelkonstruktionsaxiom) besagt, dass es in jeder der beiden Halbebenen einer Ebene bezüglich etwa der Geraden zu jeder beliebigen Zahl zwischen 0 und 180 genau einen Winkel
gibt, dessen Größe gerade die Zahl zwischen 0 und 180 ist. Die Zahl 90 ist größer als 0 und kleiner als 180 und demzufolge als Winkelmaß zulässig.
Satz V.4 :
- Jeder rechte Winkel hat das Maß 90.
Beweis von Satz V.4 :
- Schreiben Sie das Skript selbst. Das Video ist als Hilfe zu verstehen.
- Schreiben Sie das Skript selbst. Das Video ist als Hilfe zu verstehen.
Die Relation Senkrecht auf der Menge der Geraden
Definition V.8 : (Relation senkrecht auf der Menge der Geraden)
- Es seien
und
zwei Geraden. Wenn sich
und
schneiden und bei diesem Schnitt rechte Winkel entstehen, dann stehen die Geraden
und
senkrecht aufeinader.
- Es seien
- In Zeichen:
(in der Formelbeschreibungssprache Tex: \perp , läßt sich gut merken, von perpendicular)
- In Zeichen:
Bemerkung: Testen Sie ob die Definition korrekt ist: Warum muss nicht gefordert werden, dass die beiden Geraden komplanar sind?
Definition V.9 : (noch mehr Senkrecht)
- Eine Gerade
und eine Strecke
stehen senkrecht aufeinander, wenn die
und die Gerade
senkrecht aufeinander stehen.
- Eine Gerade
Ergänzen Sie:
Eigenschaften der Relation senkrecht
Satz V.5: (Existenz und Eindeutigkeit der Senkrechten zu einer Geraden auf einem Punkt dieser Geraden)
- Es sei
eine Gerade der Ebene
. Ferner sei
ein Punkt auf
. In der Ebene
gibt es genau eine Gerade
, die durch
geht und senkrecht auf
steht.
- Es sei
Beweis von Satz V.5
Aufgabe_Tutorium