Lösung von Aufg. 14.4 (WS 11/12: Unterschied zwischen den Versionen
RicRic (Diskussion | Beiträge) |
|||
Zeile 1: | Zeile 1: | ||
Schauen Sie sich das nachfolgende Applet an und bewegen Sie die Figur am Punkt Z.<br /> | Schauen Sie sich das nachfolgende Applet an und bewegen Sie die Figur am Punkt Z.<br /> | ||
a) Welche Bedingung ergibt sich für den dargestellten Winkel <math>\angle MAB</math>, wenn die Gerade ''g'' zur Tangente am Kreis ''k'' im Punkt ''A'' wird?<br /><br /> | a) Welche Bedingung ergibt sich für den dargestellten Winkel <math>\angle MAB</math>, wenn die Gerade ''g'' zur Tangente am Kreis ''k'' im Punkt ''A'' wird?<br /><br /> | ||
− | Der Winkel <math>\angle MAB</math> wird zum rechten Winkel, <math>MAB \ \perp \ g</math> --[[Benutzer:Phhd mat|Phhd mat]] 11:12, 30. Jan. 2012 (CET)<br /><br /> | + | Der Winkel <math>\angle MAB</math> wird zum rechten Winkel, <math>MAB \ \perp \ g</math> --[[Benutzer:Phhd mat|Phhd mat]] 11:12, 30. Jan. 2012 (CET)<br /> |
+ | |||
+ | <br />Also genau genommen verschwindet der Winkel <math>\angle MAB</math>, da der Punkt A und B identisch ist. Es müsste also heißen: <math>\angle MAZ \ \perp \ g</math><br /> | ||
+ | |||
+ | |||
+ | <br /> | ||
b) Ergänzen Sie mit der Erkenntnis aus a) den folgenden Satz: Wenn eine Gerade ''g'' Tangente an einem Kreis ''k'' im Berührpunkt ''A'' ist, dann ...<br /><br /> | b) Ergänzen Sie mit der Erkenntnis aus a) den folgenden Satz: Wenn eine Gerade ''g'' Tangente an einem Kreis ''k'' im Berührpunkt ''A'' ist, dann ...<br /><br /> | ||
...steht der Radius <math>\overline{MA} </math>senkrecht auf ''g'' --[[Benutzer:Phhd mat|Phhd mat]] 11:12, 30. Jan. 2012 (CET)<br /><br /> | ...steht der Radius <math>\overline{MA} </math>senkrecht auf ''g'' --[[Benutzer:Phhd mat|Phhd mat]] 11:12, 30. Jan. 2012 (CET)<br /><br /> |
Version vom 31. Januar 2012, 19:24 Uhr
Schauen Sie sich das nachfolgende Applet an und bewegen Sie die Figur am Punkt Z.
a) Welche Bedingung ergibt sich für den dargestellten Winkel , wenn die Gerade g zur Tangente am Kreis k im Punkt A wird?
Der Winkel wird zum rechten Winkel, --Phhd mat 11:12, 30. Jan. 2012 (CET)
Also genau genommen verschwindet der Winkel , da der Punkt A und B identisch ist. Es müsste also heißen:
b) Ergänzen Sie mit der Erkenntnis aus a) den folgenden Satz: Wenn eine Gerade g Tangente an einem Kreis k im Berührpunkt A ist, dann ...
...steht der Radius senkrecht auf g --Phhd mat 11:12, 30. Jan. 2012 (CET)
c) Beweisen Sie den Satz aus b) indirekt.
Voraussetung: g Tangente an k, , ist Radius
Behauptung:
Annahme:
(1) Es existiert ein Lot mit der Eigenschaft
(2) Antragen Punkt auf Strahl
(3) nach SWS
(4) nach 3. und Dreieckskongruenz
(5) ist Radius nach Vorausssetzung
(6) ist ebenfalls Radius nach 4. und 5.
(7) nach 6.
Widersprung zur Voraussetung!--Phhd mat 11:12, 30. Jan. 2012 (CET)
d) Gilt auch die Umkehrung des Satzes aus b)? Beweisen Sie dies.
e) Entwickeln Sie ein Tangentenkriterium aus b) und d)