Übung Aufgaben 5 S (SoSe 12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „=Aufgaben zum Abstand= ==Aufgabe 5.1== <u>'''Satz:'''</u> ::Von drei paarweise verschiedenen Punkten <math>\ A, B</math> und <math>\ C</math> ein und derselben G…“) |
(→Aufgabe 5.5) |
||
Zeile 36: | Zeile 36: | ||
== Aufgabe 5.5 == | == Aufgabe 5.5 == | ||
− | Beweisen Sie: Je vier nicht komplanare Punkte sind paarweise verschieden (Hinweis: Nutzen Sie bei der Beweisführung die Sätze aus Aufgabe 4.3 und Zusatzaufgabe 4.4).<br /> | + | Beweisen Sie: Je vier nicht komplanare Punkte sind paarweise verschieden (Hinweis: Nutzen Sie bei der Beweisführung die Sätze aus Aufgabe 4.3 und Zusatzaufgabe 4.4).<br /><br /> |
[[Lösung von Aufg. 5.5_S (SoSe_12)]]<br /> | [[Lösung von Aufg. 5.5_S (SoSe_12)]]<br /> | ||
+ | |||
+ | [[Category:Einführung_S]] |
Version vom 9. Mai 2012, 12:52 Uhr
Inhaltsverzeichnis |
Aufgaben zum Abstand
Aufgabe 5.1
Satz:
- Von drei paarweise verschiedenen Punkten und ein und derselben Geraden liegt genau einer zwischen den beiden anderen.
Beweisen Sie diesen Satz.
Lösung von Aufgabe 5.1_S (SoSe_12)
Aufgabe 5.2
Zeigen Sie, dass für drei paarweise verschiedene Punkte und gilt:
Tipps zu Aufgabe 5.2 (SoSe_12)
Lösung von Aufgabe 5.2_S (SoSe_12)
Aufgabe 5.3
Zeigen Sie, dass für drei paarweise verschiedene Punkte und gilt:
Wenn und dann gilt
Lösung von Aufgabe 5.3_S (SoSe_12)
Aufgabe 5.4
Beweisen Sie: Zu jeder Strecke existiert genau eine Strecke auf mit und
Tipps zu Aufgabe 5.4 (SoSe_12)
Lösung von Aufgabe 5.4_S (SoSe_12)
Weitere Aufgabe zur Inzidenz
Aufgabe 5.5
Beweisen Sie: Je vier nicht komplanare Punkte sind paarweise verschieden (Hinweis: Nutzen Sie bei der Beweisführung die Sätze aus Aufgabe 4.3 und Zusatzaufgabe 4.4).
Lösung von Aufg. 5.5_S (SoSe_12)