Übung Aufgaben 5 S (SoSe 12): Unterschied zwischen den Versionen
Wokkow (Diskussion | Beiträge) (→Lösungsvorschlag zu Aufgabe 5.1) |
Wokkow (Diskussion | Beiträge) K (→Aufgabe 5.2) |
||
Zeile 16: | Zeile 16: | ||
<br /><br /> | <br /><br /> | ||
[[Lösung von Aufgabe 5.2_S (SoSe_12)]] | [[Lösung von Aufgabe 5.2_S (SoSe_12)]] | ||
− | Vorauss.: | + | |
+ | Ich möchte im Voraus sagen, dass dies ein Lösungsvorschlag ist, aber ich wusste nicht, wie man das im Geowiki macht, ich bin nur hier hereingekommen. Und außerdem behandelt es Aufgabe 5.1. Echt sorry! | ||
+ | |||
+ | Vorauss.: <math>A \neq B \neq C \neq A</math> und koll(A,B,C) | ||
Beh.: O.B.d.A. Zw(A,B,C) | Beh.: O.B.d.A. Zw(A,B,C) | ||
Version vom 20. Mai 2012, 11:32 Uhr
Inhaltsverzeichnis |
Aufgaben zum Abstand
Aufgabe 5.1
Satz:
- Von drei paarweise verschiedenen Punkten und ein und derselben Geraden liegt genau einer zwischen den beiden anderen.
Beweisen Sie diesen Satz.
Lösung von Aufgabe 5.1_S (SoSe_12)
Aufgabe 5.2
Zeigen Sie, dass für drei paarweise verschiedene Punkte und gilt:
Tipps zu Aufgabe 5.2 (SoSe_12)
Lösung von Aufgabe 5.2_S (SoSe_12)
Ich möchte im Voraus sagen, dass dies ein Lösungsvorschlag ist, aber ich wusste nicht, wie man das im Geowiki macht, ich bin nur hier hereingekommen. Und außerdem behandelt es Aufgabe 5.1. Echt sorry!
Vorauss.: und koll(A,B,C) Beh.: O.B.d.A. Zw(A,B,C)
Beweis der Existenz: Annahme: nicht Zw(A,B,C) 1. d.h.
(da Annahme und Kontraposition der Zwischenrelation)
2. nkoll(A,B,C)
(da Kontraposition der Dreiecksungleichung: koll(A,B,C) O.B.d.A. )
Widerspruch zur Voraussetzung
Beweis der Eindeutigkeit: Vorauss.: Zw(A,B,C) Beh.: Annahme: Zw(A,C,B) 1.
(da Annahme)
2. d.h. Widerspruch zur Annahme, da dort gefordert ist:
--Wokkow 12:17, 20. Mai 2012 (CEST)
Aufgabe 5.3
Zeigen Sie, dass für drei paarweise verschiedene Punkte und gilt:
Wenn und dann gilt
Lösung von Aufgabe 5.3_S (SoSe_12)
Aufgabe 5.4
Beweisen Sie: Zu jeder Strecke existiert genau eine Strecke auf mit und
Tipps zu Aufgabe 5.4 (SoSe_12)
Lösung von Aufgabe 5.4_S (SoSe_12)
Weitere Aufgabe zur Inzidenz
Aufgabe 5.5
Beweisen Sie: Je vier nicht komplanare Punkte sind paarweise verschieden (Hinweis: Nutzen Sie bei der Beweisführung die Sätze aus Aufgabe 4.3 und Zusatzaufgabe 4.4).
Lösung von Aufg. 5.5_S (SoSe_12)