Serie 1 SoSe 2013: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 1.04 SoSe 2013)
(Aufgabe 1.05 SoSe 2013)
Zeile 23: Zeile 23:
 
[[Lösung von Aufgabe 1.05 SoSe 2013]]
 
[[Lösung von Aufgabe 1.05 SoSe 2013]]
  
 
+
=Aufgabe 1.06 SoSe 2013=
 +
In der Differentialgeometrie ist der Begriff der ''Krümmung einer Kurve'' von zentraler Bedeutung. Kreis sind Kurven mit ''konstanter Krümmung'', d.h. ein Kreis hat in jedem seiner Punkte dieselbe Krümmung. Je größer ein Kreis <math>k</math> ist, desto mehr nähern sich hinreichend kleine Teilstücke des Kreises Geradenstücken an. Je größer ein Kreis ist, desto geringer ist sein Krümmung. Entwerfen ie eine sinnvolle Definition des Begriffes ''Krümmung eines Kreises''.
  
  

Version vom 20. April 2013, 11:29 Uhr


Inhaltsverzeichnis

Aufgabe 1.01 SoSe 2013

Es seien a und b zwei reelle Zahlen. Definieren Sie den Begriff arithmetisches Mittel von a und b.
Lösung von Aufgabe 1.01 SoSe 2013

Aufgabe 1.02 SoSe 2013

Es seien a und b zwei natürliche Zahlen. Definieren Sie den Begriff größter gemeinsamer Teiler (ggT) von a und b.
Lösung von Aufgabe 1.02 Sose 2013

Aufgabe 1.03 SoSe 2013

Informieren Sie sich darüber, was man unter der Gärtnerkonstruktion einer Ellipse versteht. Entwickeln Sie eine Definition des Begriffs Ellipse, wie er sich unmittelbar aus der Gärtnerkonstruktion ergibt.
Lösung von Aufgabe 1.03 SoSe 2013

Aufgabe 1.04 SoSe 2013

Mark definiert den Begriff des Rechtecks wie folgt:

Definition


Ein Rechteck ist ein Viereck, das einen rechten Innewinkel hat und bei dem die gegenüberliegenden Seiten parallel und gleichlang zueinander sind.


Diskutieren Sie, ob die Eigenschaft der Minimalität für Marks Definition gewährleistet ist.
Lösung von Aufgabe 1.04 SoSe 2013

Aufgabe 1.05 SoSe 2013

Der Begriff der Parallelität zweier Geraden sei bereits definiert. Definieren Sie, was man darunter versteht, dass zwei Geraden windschief zueinander sind.
Lösung von Aufgabe 1.05 SoSe 2013

Aufgabe 1.06 SoSe 2013

In der Differentialgeometrie ist der Begriff der Krümmung einer Kurve von zentraler Bedeutung. Kreis sind Kurven mit konstanter Krümmung, d.h. ein Kreis hat in jedem seiner Punkte dieselbe Krümmung. Je größer ein Kreis k ist, desto mehr nähern sich hinreichend kleine Teilstücke des Kreises Geradenstücken an. Je größer ein Kreis ist, desto geringer ist sein Krümmung. Entwerfen ie eine sinnvolle Definition des Begriffes Krümmung eines Kreises.