Diskussion:Halbebenen oder das Axiom von Pasch: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: ==Alte Version== ===== Beweis des Satzes IV.1 ===== '''Voraussetzung:''' <math>Q_2 \in {gQ_1}^{+} </math> <br />'''Behauptung:''' <math>{gQ_1}^{+} \equiv {gQ_2}^{+}</m...) |
*m.g.* (Diskussion | Beiträge) (→Alte Version) |
||
| Zeile 1: | Zeile 1: | ||
| + | == Analogiebetrachtungen bezüglich des Begriffes der Halbebene == | ||
| + | === alte Version --[[Benutzer:*m.g.*|*m.g.*]] 19:44, 23. Jun. 2010 (UTC)=== | ||
| + | {| class="wikitable center" | ||
| + | | style="background: #DDFFDD;"| <center>'''Halbgeraden'''</center> | ||
| + | | style="background: #DDFFDD;"| <center>'''Halbebenen'''</center> | ||
| + | |||
| + | |- | ||
| + | | <ggb_applet width="398" height="401" version="3.2" ggbBase64="UEsDBBQACAAIAGSMwjwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1Vlbb9s2FH5efwUhFMWGIbIoWbKF2imyrg8BsiVdsmIYhgG0RMtcdHElypcW/e87vMiW7FhR3KQXP0TmRYeH3+VQckavVkmMFjQvWJaODWxaBqJpkIUsjcZGyacnQ+PV6bNRRLOITnKCplmeED42HNM2RH/JTp/9MCpm2RKRWE55x+hybExJXFADFfOckrCYUcob/aRcsZiRfH05+Y8GvNgOqCDn6byEVXheQl+QhBesqJo9ueA8ZvxXtmAhzVGcBWPDcyF1+PaO5pwFJB4bfUv12GPD3hmELkeMzrKcfchSLqZvg0+hB6GCfaBwpyX6Rj250REtg5iFjKRiMzIPmITQkoV8BiH9IYSkLJoJgHxfRQuyLA+v1wWnCVr9TfNsbJxg7Auk16o5dEWjgLxgQdeSI/WWDEMX15RzoKVAZEW3gEU5CxuN8+KXLN52zTOW8tdkzstccurormu+FgvAWrlI+CyNYqr7MEA+o8HtJFtdSxCwo0LfrOfyFpnQJHqdxVmOcgGvCxP0daKuco7IdDPLknMsOUPHEEE349i35Qx5nairnBWzVKWmd46rXWOrWoYVSHQIGEGKm83HZEKBWgOVKeMXVQMkcLvdqrjh9zKZgAfqItjExI8Vc9Tbkc/oluYpjZVIUuC2zMoCLYQY1VoykZAGLIGmGtCQEEHXn5CA6g1plNMqceUgBZgctepC3Oke9aokRA4F5BpwKAWwHy72IpzKwSVjIzEj00Ah4aJXWCGmCQWfcKkJKakNNmfGpihk0t+Vk/X4FmUY3lORiyX94kLi+YxAppUJYrIGv9c3JSP+loXNrZIUIJP7ANvNRQBBypzSUNc4rpWM5hBS+qKGuASqQCvIAaocWoNhHRODtz+ou+UkZSJhf7mwqxlWqNyDz9uj8Kn7R2L1tdEZmK5t1T+uAss27f7DwAqyJCFpiFKSwMIX4HeJEBOnACKWUBQiWACnUCl5NRCpUDrAHu6idGxgjYxmNeEzMG1Ki0JktNl073husOuoymXZndm5nE4LygWcnqe1ZreRt4X/xDL9vrzFNp0mEY6CH4jwXG/bjXfraQsC9H2q5hSqqrEEjtyA8Xbq/iDrrsxN2pnLIVKF+eQwcX5n4hoSTkOmDADTL/Vsil5E/CXaEPZEtempCNxFoo1ASUQsrH2ecjikqCz6+2fPLaVzcehfpjc5SQvx8Kfm1M60A0q4khWvqYVoTwRX7SJols2ro8omthV18vqtlM6h6dveEFvW0MMD3xkq52PT83z4OB72nL6NRUU4vowe9OLVHg1Bdy8GX8qL8SEvCvNtrfhZdNa8iE0XC4t5ztDx3AH8kZw45qBO1MDXlPjmwHJs13d8x3Xh9aL//Tjzmkaif0cbV4fqdNiujUJHq6gNv4g+SPvjkdUqCa+bJCzTHdyhCFBK32pIQhXrk4HZdwbeVhLO9yOJdxAzy7ue3GW7IhYqWMVleVgQdpsgmq9btX0eR3rHOnDXSbwWEX31SLsN3WVDtVcuTWxAck4LeAXUO+bQlkcloqu5wPxonvar+uJBPC0ehaf7X10ehaa7yvJanJT7RfwrkAa9OYQWRUvDsjTU1BL10MLYIaB3HzXL74kay/Rs28We7TsYDzB8q8qmPfD7ntvHbt/xh7735gQ/AT3tPFDNw+rH5U93AZ+WCc1ZYGzniyVho2W13f3ddYYU35/fDV1xrHN88b7M+Muzt/9+/PkTUg1jP2MOdxjN25/wPeiR1MKKC3JD/2oeT/qH1wIImFY5qx9hQSaaanvPgapo+0Ndpl3Xb3zqD9D3Q2/vQX/yEOjtzi8oD3/q/VaRd70K+YNQN0CbZFlMwaoVJmTXYTV9dhLxcSC5d/4E46tTpN8C4f0ichoiev5PtqC5qGwfr95+et5dTE53H38+BE+tE8e0Bg1f6kNBPFc1HrfsQyrq1X+elv+R0f+SOv0fUEsHCKhmSd+1BQAAxBoAAFBLAQIUABQACAAIAGSMwjyoZknftQUAAMQaAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAA7wUAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | ||
| + | |||
| + | | <ggb_applet width="396" height="402" version="3.2" ggbBase64="UEsDBBQACAAIAC+LwjwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3V3rbttGFv69fQpCKIp2GzNzv6B2iyipXTduE8PZYrHdbkFJtMxYFlWKSuwUfaN9in2yPTND6kpRoi4xlSAAw+FwNPN955w558xwcvzd/V3PexcmwyjunzSwjxpe2G/HnajfPWmM0usj1fju28+Ou2HcDVtJ4F3HyV2QnjSoTxqmfBR9+9nfjoc38Xsv6Nkqv0Th+5PGddAbhg1vOEjCoDO8CcN0pjwY3Ue9KEgeXrXehu10OHngGjnvD0bwK2kygrL2XeciGua3T+0PDnpR+iJ6F3XCxOvF7ZOG4NB1+NcvYZJG7aB30mDIlZCTBpl7CEXUPL2Jk+hD3E9N9Unj11DiecPoQwhvIlN2/NQO9DgctXtRJwr6ZjC2H1DJ895HnfQGmtQCmgyj7k3qft221o7jpHP1MEzDO+/+X2ES2+74EiGJCVcaSSp4w3twjzDV8EjAaBTFlFMNGEKHoSdM+5ohgSWXEmuJmXlp+TP72+G7qzBNgcuhF9yHE5S7SdSZuTkfNuPepGgQR/30eTBIR4kVBJoVXaUP5ucAucSM8lm/2wuzMgI83YTt21Z8f2WRw9Q1/eZhYF+xHWp1n8e9OPESAwIMoJtdW+5q65iejmshWwfZGlkbptHxc6yJrWGvLXe1tXpR33UtGznOR41R/jPR0DMF0LiR3/Hge0ErBHloeKN+lF7kNyA3t9lQsXvh59FdCxRnWnLGbeJdtXn8dE7mjm/DpB/2nGT1gdtRPBp674wEu9+yHemE7egObt2DDJLA0PUP6IAr7YTdJMw77tTOAWafzkjvXPHx07wTpg9D6Gs7BfsB40nNWIx6p6BaJ407v+s3vE6QmlKjP73wLgTlSq1MWJEaY/OsMbYksTUKufpnzycow+NC+bCSFPQGNwGU+NkAesEDmIjpIdn2foo7swMN+gCYHQVo6sA0YCgZhGEnM4tpJsfeAJq0WjGFt4Vp6N2fNI6wz0ANhdCMYcww0wz01JUrKSiVQlNCCGXQ/gfXtm3CKZixJ7ZbNGPfIbYCu+angR3yFZrgpgjmDjqwlkJIKQXjgmtNlK4GXTu+uwv6Ha8f3EE3LsAyWLwiM8l4ATKy5wXYwOgwGqX5g65rKmtggQVjZMYgdxuzdie9AfXuh0PQZj6B4OkmTHFsqTKXily9ur4ehqkBV2oHpi5jckqOAXSCFBeYUCEIRZzY94lPFJEYI66IoDDXWCqITylBhDAMj7hQnM1b4RI0wj/6rs7Q2cLoDmb3dpRW0YDLT0UDxKykZxpAfSy0AI9AY4KQNlxspwDNaAggxcm6itCqoAit5YpAyhRhdq5czRjanK8pOS8Q6Icl4v/BmnEuucbAEVYCc8pkiaTPD3ddSZ/l67yfgk8AEM2R1XVktRbIel5O1qzmPF/UnHWIEMwyYS4td9kBF9jXGKScEMUUk4wi6sgQPuOaMkop14ghTS0X3JcU7sDyCM4IEpRvog0voh74J8V6gM1gvIBkkM6A/OyLYBAPv/kdVwF78tKjmqtpyLEvmdRgdQBABDbcIc4AW8yUoBCiICIq+iprIHy5GuHLTRC+XI5wVfuyI4i1DxYdIMYaMwouoAOYgCHhmAnCGYMoUG7l0hQi3FyNcHMThJt1k2EQYSQzcK1/nTkqTEokmcZIEcTYVlNmuZFYw0qQTawEqQvCYCWYz4TWglGisEL5LEmljyVCGCuNBBgQyfdnKNawFJVQvqwbylr7UjEIGAXThIDsZpYCcZ8KDTYEwWOpMNufqVjDVlTCuFk3jDGmEGSOA0yQWAsyZeB5cIEQxO4CohixDcSvkvQm7sb9oFcQal4uc9raFTzs9iF52EsCySLH2zjY0pcYiDCGnGKETRJg3w52KWGZlW8vENapQFjnkAgrjoiWBEQwLzCMsWaUY3AWhXhctprL2AorsBV+smxBhEWUJooq8JeQZvoj8LUsfG07qjoLVL2oMsO8qFH4ykxuQAiYPmBi4Vpyls/gPsza8JdKCGKBDr7D+HUFvOECvN9Xgff7+sCrfI441kjB/C0ZyHWWVxe+UAyBU8rgD+VM7RDcn6IkWUiSdZfZmMB5OxUsTf7GAdmbhcwYW5IYztxU6iOttWKUco4Y5/ufzpdpRMfxNsXSDHunVfTitD56AYQIzbhSHEvQD5OCz4Iz6mPElJIEIgrgbJdZs2UYh+UYn1XB+Kw+GGPiUyWIEJwwopHUeWymfA1xmUYamxQPZWyHGL+Oew/g5xT7o6cuTjuDCy1K2P8SQbPtW5zx8Tt29a9d/a69ZxCHrM79uE7kmI/b3YXJmloDmWYQczq93jVttnAVBpcvHg3Drrmb2OHfdzOgYoksGc/GEsmMI8eIUIQppoR0mXLswwQINlZReMaVduKofMo4kRLEkUkkd7ViYeWtZ1azxtYgivuLmxFuw3BgdoG86r9Jgv7QbCFydaY2OazJ0/WBsbQ4WapHmSwfgaruwanU0YJO8XzrxpxW0WzRmxGozLhJ7Suk1eGS1aonWZPdC9lCICXrUVkx51Rp+8KjU7n+0gRZY2WCVnHJJi/VJJ97RMzWCMwJ1loKgpXMdBbmPDq1DYuqnSfNT1djfLrJ+trpVutr+/B+CfE5VlhQs8UUE0UzbeRU+1SC3mAO8YUget/L8merIT/bBPKz+kGumI8pByNl1obHIR3jwpeAqsncmbgD7xvx5mrEm5sYkmbdDAnIONNEaI2FFBwwdnZE+EgBD5wTjSkG0B91FZltYqtZXSB+zFXk0zVQPt1khfN0qxXO/eQqkE844MgYk9p+QmBdHyEBUGxT0EbQd5kmLTPWpZCfbQL5Wf0gZ8TE2MZ1FBBCTBL/hEtfwwOEGVz2P0FWWcivZEyadTMmH2Mhf0vXegNjXRd0D8Kt3sBM18ZiHKBLvYGJrg/cB+dOb2Cc62I8PoYrvWRtJAPCrZCMb8hEIN1qyZLVqXxtY7qVYBwauvWT6Xa64xuzkrIeb8WrKVstA8+wPPNZSb8TuY9SoPqrrPb//vsivIbf6Px69VulVB2tIg8Vll5mYu8tR//xksUKrIRSnAowHVrahT+T15c+WBEMgm+XY5WbHsGaEx8CHooxIpQilENZy/TiihWY3YnqhKxiSb3y/u5deV/00m+8MVF7XwMwIaqZkQmTlDABJssSy7hvJgMC1HIiNSNuwYZRDm4oAT+JgxQogQ+X2O4+iN07XfNqmH9dMa+H2YoN0synwnxdB7O7ofhw+WptxddjrbHNqRdGPPfECvXriAlfMMSYguiZQrjBdrVf8SOszBRuHptxUbrLQseNA8h6eYJrh5FbfZxTiPNpOc6nm+J8ujXOe9kDRpT0tbF2oCFSYLfcyRhMTpTDJEa0yYns9LvJQtTPylE/2xT1s5qiLnzKkTTfnWGGpHROIISZPuPm22Blgh+2yxi+EPVmOerNTVFv1tGmLESXRcGl3MqglAaXBSFmQaBZEG6uFXQWhJ7TrV8vtt6dK5qEotsHpKtcDLS7sLQsKC07/oLwKoJUOSzdCwK7OdqjilvMl7jFMtv/UiVAnR9yzfzi64Mmbt4/Jqws/DxiRCCfwzyPNQIvipZuGKw5cd1DJm5e4VRxOohm+lYlDq05ba1Dpm3tcLQwGuX6cGib9exeb+TN5Uf2ZRyYS+WNnEdYZZtqSw+i2uVxbBBpYk0VFiY4Eiw/UQkJzcG+gmJSIbMtvRs6jFeZTsw6jK+dG3e54PIF5T7Zgiuyi4PFVjpg5+Xe+44+BceTbT4QBOnshDcC5YRpiYgxnVQz55cIn4MthQiWaGpOWyrbYF3lULGPkPtZcWZTsCATV1UCs6u11XdtrjfX7RK+fw5+tvza6wd3LVIvvmC77gcJ0Gr6nQ3pTXifQp/gwUnjiz9GcfpN9/I/f379l/u3fX8WsRReaMy+vR1o5Qtn6+sKL8MuGl4Eb8J/zopZdiTtMEyi67zT7nha0cjlO9sYP0yDJH1t0HVQXXhfe18efQlO4ldPPOTLrzZIL1wuSyxcVk8pXC5LJjzS4Uzm40klpVQwQ0jBtRD5h1QYa6k5o+DSSUlIxfmhWIDJggAfVRDg9fe7VQ+x1xdfVivxLZO1H1ZJ2RJPs3anQh7ZynaeRLs7NPZ89RlpBwcQ3iVAP34q8OwFnZefGjqVlWudpPEPbu48z/cP/eiSti8X5tIs8Upc/RtXO3K137q07u2qibYwlUt2vKuoyGmcPsM95xMX8EmX87l+wuFmjwPaecSTCxeaF656LmCXIx8dEvJoTq2PyCFD//aQoD/6pKT+9pBO58ml/igXe1Zv6Gfn0OdQmMRRZz6R5ma2X3944sFE+sT78Yn38rdxl/JaF1Xi0IsNvZdK2whKprsizrDK1YVs5qC14rgXBhMP4NwOEt4chQss7dFKTCc4JolfnJ2Zg4kohSUYWJ/Oln3+7/hdmBjJ/fNZ86/P1wuy6UyQPdXE68u/Pl8/2t7+y9R6pIGyLMf0WdOSIZbZZyaZMPuGNKfmeCM0c7bsNNZPp/+nF3Of/5dQ3/4fUEsHCM8TtlY4DQAARGoAAFBLAQIUABQACAAIAC+LwjzPE7ZWOA0AAERqAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAcg0AAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | ||
| + | |} | ||
| + | {|class="wikitable center" | ||
| + | |- | ||
| + | | colspan="2" style="background: #DDFFDD;"| <center>Objekt <math>\ G</math>, das in Klassen eingeteilt wird</center> | ||
| + | |||
| + | |- | ||
| + | | <math>\ G</math> ist eine Gerade | ||
| + | | <math>\ G</math> ist eine Ebene | ||
| + | |||
| + | |- | ||
| + | | colspan="2" style="background: #DDFFDD;"| <center>Dimension von <math>\ G</math></center> | ||
| + | |||
| + | |- | ||
| + | | eindimensional | ||
| + | | zweidimensional | ||
| + | |||
| + | |- | ||
| + | | colspan="2" style="background: #DDFFDD;"| <center> Objekt <math>\ T</math>, das <math>\ G</math> in Klassen einteilt</center> | ||
| + | |||
| + | |- | ||
| + | | Anfangspunkt A | ||
| + | | Bezugspunkt P | ||
| + | |||
| + | |- | ||
| + | | colspan="2" style="background: #DDFFDD;"| <center>Dimension von <math>\ T</math></center> | ||
| + | |||
| + | |- | ||
| + | | eindimensional | ||
| + | | eindimensional | ||
| + | |||
| + | |- | ||
| + | | colspan="2" style="background: #DDFFDD; "| <center>Referenzpunkt <math>\ Q</math> teilt <math>\ G \setminus_{\{ Q \}}</math> in genau zwei Klassen</center> | ||
| + | |||
| + | |- | ||
| + | | colspan="2" | | ||
| + | <center>Klasse 1: </center> | ||
| + | <center>Menge aller Punkte <math>\ P\mathrm{\in }G</math> , die mit <math>\ Q</math> bezüglich <math>\ T</math> „auf derselben Seite liegen“</center> | ||
| + | |||
| + | |- | ||
| + | | <math>\ AQ^{+} = \{P| Zw(A,P,Q)\lor Zw(A,Q,P)\}\cup \{A,Q\}</math> | ||
| + | | <math>\ gQ^{+} = \{P| g\cap\overline {PQ} =\{\}\}</math> | ||
| + | |||
| + | |- | ||
| + | | colspan="2" | | ||
| + | <center>Klasse 2:</center> | ||
| + | <center>Menge aller Punkte <math>P\mathrm{\in }G</math>, die bezüglich <math>\ T</math> nicht auf der Seite von <math>\ Q</math>liegen.</center> | ||
| + | |||
| + | |- | ||
| + | | <math>\ AQ^{-} = \{P| Zw(P,A,Q)\}\cup \{A\}</math> | ||
| + | | <math>\ gQ^{-} = \{P| g\cap\overline {PQ} =\{S\} \}</math> | ||
| + | |||
| + | |} | ||
| + | [[Bild:Dozenten.jpg]] | ||
| + | <br />BITTE NOCHMAL ÜBERPRÜFEN --[[Benutzer:TimoRR|TimoRR]] 11:31, 22. Jun. 2010 (UTC) | ||
==Alte Version== | ==Alte Version== | ||
===== Beweis des Satzes IV.1 ===== | ===== Beweis des Satzes IV.1 ===== | ||
Version vom 23. Juni 2010, 20:44 Uhr
Inhaltsverzeichnis |
Analogiebetrachtungen bezüglich des Begriffes der Halbebene
alte Version --*m.g.* 19:44, 23. Jun. 2010 (UTC)
| |
|
, das in Klassen eingeteilt wird | |
ist eine Gerade
|
ist eine Ebene
|
![]() | |
| eindimensional | zweidimensional |
, das in Klassen einteilt | |
| Anfangspunkt A | Bezugspunkt P |
![]() | |
| eindimensional | eindimensional |
teilt in genau zwei Klassen | |
, die mit bezüglich „auf derselben Seite liegen“ | |
|
|
, die bezüglich nicht auf der Seite von liegen. | |
|
|
BITTE NOCHMAL ÜBERPRÜFEN --TimoRR 11:31, 22. Jun. 2010 (UTC)
Alte Version
Beweis des Satzes IV.1
Voraussetzung:
Behauptung:
und
| Schritt | Aussage | Begründung |
| (1) | ![]() Die Strecke schneidet nicht die Trägergerade g. |
Definition von Halbebene |
| (2) | ![]() liegt in der Halbebene ![]() |
Voraussetzung |
| (3) | ![]() |
Schritt (1) und (2) |
| (4) | Die Strecke schneidet nicht die Trägergerade g. |
Schritt (3), Definition von Halbebene |
| (5) | ![]() |
Schritt (4) |
| (6) | Es gilt: und
| |
| (7) | ![]() |
Der Definitionsbereich der beiden Halbebene ist identisch - Schritt (6) |
| (8) | ![]() |
Die Mengen und sind disjunkt, gleiches gilt für die Mengen und Schritt (7) - Durch Umformung:
|
Stimmt das so? --Heinzvaneugen 12:23, 23. Jun. 2010 (UTC)
Also, Punkt (4) ist ja eigentlich das, was Sie zeigen wollen, denn wenn die Strecke
die Trägergerade g nicht schneidet, dann gilt dies ja für jedes beliebige
und das heißt, dass Sie statt
auch
als Repräsentanten ihrer Halbebene nehmen können. Soweit so gut, allerdings können Sie das nicht einfach aus der Definition der Halbebene schließen, weil sie diesen Zusammenhang ja erst noch zeigen müssen (typischer Fall eines Zirkelschlusses). Sie kommen nicht umhin, das Axiom von Pasch an dieser Stelle mit einzubeziehen! Damit wir Pasch verwenden dürfen, müssen wir allerdings voraussetzen, dass P,
und
nicht kollinear sind. Der kollineare Fall ist dann nochmal getrennt zu untersuchen, lässt sich dann aber über die Zwischenrelation und über Teilmengenbeziehungen leicht beweisen.--Schnirch 13:59, 23. Jun. 2010 (UTC)
, das in Klassen eingeteilt wird
, das
teilt
in genau zwei Klassen
, die mit
, die bezüglich

schneidet nicht die Trägergerade g.
liegt in der Halbebene 

schneidet nicht die Trägergerade g.
|| Voraussetzung und Schritt (5)
sind disjunkt, gleiches gilt für die Mengen
und
Schritt (7) - Durch Umformung:
gilt somit auch 
