Der Basiswinkelsatz: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Lemma 1) |
*m.g.* (Diskussion | Beiträge) (→Beweis des Basiswinkelsatzes) |
||
(30 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 5: | Zeile 5: | ||
[[Übung_11#Aufgabe_11.1| Übung 11 Aufgabe 1]] | [[Übung_11#Aufgabe_11.1| Übung 11 Aufgabe 1]] | ||
+ | |||
+ | Ein Dreieck mit zwei zueinanderkongruenten Seiten heißt gleichschenkliges Dreieck. Die beiden zueinander kongruenten Seiten heißen Schenkel des gleichseitigen Dreiecks. Die dritte Seite des gleichschenkligen Dreiecks heißt Basis. Die Innenwinkel eines gleichschenkligen Dreiecks, dessen Scheitelpunkte die Eckpunkte der Basis sind heißen Basiswinkel des gleichschenkligen Dreiecks. | ||
+ | --[[Benutzer:Rakorium|Rakorium]] 07:14, 8. Jul. 2010 (UTC) | ||
=== Der Basiswinkelsatz === | === Der Basiswinkelsatz === | ||
Zeile 59: | Zeile 62: | ||
Ein schöner einfacher Beweis, leider hat er hier keine Gültigkeit. Warum? | Ein schöner einfacher Beweis, leider hat er hier keine Gültigkeit. Warum? | ||
+ | |||
+ | Dieser Beweis ist so nicht machbar, da der Basiswinkelsatz hier mit dem Kongruenzsatz SSS bewiesen worden ist. Allerdings braucht man für den Beweis des SSS den Basiswinkelsatz. Somit kann man den Kongruenzsatz SSS bei dem Beweis des Basiswinkelsatzes nicht verwenden. | ||
+ | --[[Benutzer:Mirasol|Mirasol]] 08:00, 6. Jul. 2010 (UTC) | ||
+ | |||
===== Ein im Rahmen unserer Theorie korrekter Beweis des Basiswinkelsatzes ===== | ===== Ein im Rahmen unserer Theorie korrekter Beweis des Basiswinkelsatzes ===== | ||
Probieren Sie ruhig weitere Varianten: Mittelsenkrechte ... . | Probieren Sie ruhig weitere Varianten: Mittelsenkrechte ... . | ||
Letztlich hilft nur die Winkelhalbierende. Damit wir uns auf die wesentliche Beweisidee des Basiwinkelsatzes konzentrieren können, schicken wir ein Lemma voraus. | Letztlich hilft nur die Winkelhalbierende. Damit wir uns auf die wesentliche Beweisidee des Basiwinkelsatzes konzentrieren können, schicken wir ein Lemma voraus. | ||
======Lemma 1====== | ======Lemma 1====== | ||
− | ::Die Winkelhalbierende <math>\ SW^+</math> eines Winkels <math>\ \angle ASB</math> schneidet die Strecke <math>\overline{AB}</math>. | + | ::Die Winkelhalbierende <math>\ SW^+</math> eines Winkels <math>\ \angle ASB</math> schneidet die Strecke <math>\overline{AB}</math> in genau einem Punkt <math>\ P</math>. |
+ | |||
+ | |||
+ | [[Bild:Lemma01.png| 300 px]] | ||
+ | |||
+ | ====== Beweis von Lemma 1====== | ||
+ | später (Wir haben wichtigeres zu tun.) | ||
+ | googeln Sie: "Geschichten aus dem Inneren Gieding" und Sie werden fündig. | ||
+ | ====== Beweis des Basiswinkelsatzes ====== | ||
+ | <ggb_applet width="1272" height="830" version="3.2" ggbBase64="UEsDBBQACAAIAAqm6DwAAAAAAAAAAAAAAAAxAAAAYjVhMWU3NzNjYjczMGM3NzA5YmE1ZWE2ZGM4ZDVmOTZcQmV3ZWlzc2NoZW1hLnBuZ81XaVgTWRathNUoSwNKIzTYalTSYFpFwSUsLo0Ji+mQEhFBVtkJKpsBkrjS4JIeJNCiAqKBWCEQFTACQpBWGhhhCCgoWxQVkC3soIFMJei009/XPfPNr/lTt+67VfdV3XPPee8lEZ3tNVDLUQAAaOD37iYBgJImfP9KHQlfh19G/QMANFfid9uRY18OdXr75JQvV/FqHYxuWzTgtTT80Vc30mxPbctIFY5LMxq7mnbiRnBnWrZ6IIC9VltVAADSARiQMpCNQQAcwp+5wqtgvzLAN3DPJ2zPT1wbEsTvHrBBqCFcWY4kW6GdEERf1tOOsAU34hEINfIn51iOwlm7XDtCrIWkBTXmuTRfpM8cDce2hrT6/QLnXiG2DUOMODQRmaq7wt4vToX8UpBITXutGZ6pefCP3WnHItFgEq42FtywY/IN6t1IJVr5Gk8DhVKRTm26cKmnvceAxp/lihKSQqmrNsy93TnicXmC27PmFSWXWLBoJvYqRIBS+JRVg1kmyeTnRpK2DJEVrzHsLBg0Nez4jXtVDA+fUXZdKi3qHlnqvqUSO9+0NaQsgLlC/MjYk9txeIaeHuMh5BCWktlr/ft50ITfwMfmJVduPcjrHWHG7fPvDwGDTlgmfPgtj0JRjqd7y6LB5Zl8RzClbweiu11DUDtNvyyYj6WD/ad5I2uCTvbPbloWHdk5dR0q2oG9swmUWG4nozW/njoF4nOOq8RntZcmomaauQE1OsZjPR6bh7WTjGbW9v622nwDLjGrs9zNsZB7rnIjfXVb+Zb5yRpfpqub9T6o4UycGa0ylRo/xa7Vp2XFzc7ll1PyukXx1TUPhpYxD6GYAJhE8s6aO/vGdc23B0N/Sg4zvBbvnhS63rM46NEZWi86pQbd5IasqNdaHJufdnEkd4Ur01JEKW1wasbe7Ky4W/6zLPTt09VPrXE3LwroklHfq2YcrGtL3uFDlzJaxn9V7Yjc6aRf5sJMlC31NNO6U/7QPG8a8aQQ3XW/qVNcP/DixSp//TQQjTqXMBWttd6hIelVZeyzmbf2zdalNRt9p2UvzNq831nTklqObr6+m24j/jinXldb5j/7w8V8DK/z/YHOxqgNeJkXdb0ZTfueycF/MHP01bwf/tLQ+Wb87zIfWXmVYcgY9U5N72F11T5pmMHsmsutzykgu7GrS30mrdq6sXrsaWX8oxN+mfaUE5NHk+Ptx2XNszNoncNpfR+U5teCQQ+KUgWIPAxIvWHgluOZn4dNL++NqcllBUSfzaBmvignDFk64SpK68f6fSjSBC7mNuERDaVPb96QfK6v2PieQNfEo4awY6LfId84fTeXIHNnHXFwoOxHW4q3WOMKz7OrH/t3RrGJE0q3wnIt+x45Efp73ZYIav0jgm1Edduausno+klIRKu2picjQdO0gUJXdnFPSiDYL+OS+EUTR8C7vLiPzePLw8M9Kd9WNV8Y7xldr/6u9nJvEn12eqWlVCQdnXQ6+RhKccqGRJnV1mVmhLmxX6chkt9IzzRX9OEovgiasANRBUPdXIK1WfbdfgPZDVWTcqtLmQ7tjltcuuj2oXMxHbmN9wSI1oaCMVqJn70JU9ZwvLUglFPnwpIG34GKevnYmNeex/ez29Zu8OcQKN/If3WEzK5lzQ2AtfbE/RtwvZX9AqldY2HRO/qqipuBkyfS4lg5Vx+7Gh/uuuzgITsCEaz5zuDLqDYX2T7JD+BBM92Hd12DRh1auY2SYYd8I3nGbg7htqw+ia5TY3lQgM9IoFof2enTTnytH5Dp+QKXkNlXMty/LX7Q2f3NOMJHVgGWY3j0J1WbixOCQ4+E6dOVEd1BbbruFdXYxp0WMqeWbubSvfEde1devReV27+YLtXZd2kx2P84llcRszKLq+cRTGKVWFp2f7C0aDbBWVr76pZvT2k39m3UdZtzfnhdRLknqdWtjGmNHJc57/D2sZvvpRTiTjFGNg3eDiil+7mNmZ5uTLoWdsWz3ke6K6DmsCE+zENamL7XON2RS3C2WCEudynNKOb615xVCBtNnJk6wyuso+BGJgXKh0CkIymZMNzLlW555sl0gDVUuPotM/jxfMn44EJc2Ug7AqxdrSKXU7lVNoJHFRL7SXgRC6OcB7Bah54B0frXGQwlkIfZ2gRbKAVSVrdaIYZS8Kg1pv9u1a3UBQtii+xSk4oy9+XlGsokPR2eBa0Ftd8jyGhb4cmXyK70nBvGGudetuivW5jokrHE3eVgS06F+ds+gkK+QUQlK6f2FImYtjGSfZHMHo32TTu76bIeGe21D8HkmXokYq+1f7Of3Z9rBi6SLwqEZbkSYVboUWbBwwTflHdUDy8lEC+8Mc8wGVM9RO2lnjMfxn5DruJN2lZBq8X8RIbJUfeYYOJbK/1CI3JtFoIowCyyIptIlGgHbKXa4/l8nA3n7ndxtk3w08QYIfPDV6mjUFEpZWCsKYn2MWV8vFVly48sZaNoI4kRFsJcuZUNv88hRMn5CcDLE5sb1mlbhceIszFDeZhZPqCoqj0R6b/mNuM0VJQFFXF1NQZjU5AQyXmaJUkaTFhAREJdKGQ2nFNRbV0NufNF6bNhqYAdZAH8hBdc6y8tg3GawSXI4RAe4eoAwh8OgMeaFqlbEZ99TvTfvLtCnCDEDs1GBpeOatk0DL2lDmUs0bWVNw7HXJxguvx9kxfHKeEkSdEsr/oQlZvZe8zft5MuFdzCIJCa5KUSd9MMs3Uq/qa7XF/aghldwReMH8h/SqIeG+oEM+1Vx3ABpnNk87m7HYEWeDsQSWa/h0ix7qN3yi2sJ/zOf6QX2uK2cw4VLg6V17UFxqWTUVYUpm/gU5Vfx388xz6NERQbrzsAIzClLVlFGajQ4teefPdHNHtoB4S+QdLRLIP9bZkm5BcsXHYgqBPB2S6umVevm88OiOkWfSxZb3K97z52qw3dw0sXbhrvGkTjaI77h8xwJTMjsrwdGVCkfvs6saqR/LZo483QAVVlIysqSPDoubjqaaIKgNQ0KsHsoZJaO9amMbOV4WA0iDoC3qa3/1oZB8hLCi/2u/fVVaDCU07BhYhVWWh8IutaoKIxklR/d/CfGCrva8UOSF7lBftnWyOIB++pDL3B2j1r5eRZUAkGpEBDwUj5pF9aOUM/Yz6NqCzqbb7d/8RGanU/faA4ZKMjIJ88u4QxzQ7k2J++sWVShaCYKPGmmvR56rJiDsVha6miGYmgkMIOvJutl8pe4hGkBAZRuRvq667gUZAO/yaj5nlqQbV+w9AwJCr6umtk+7JAhzWmHAIDIu8BS4uc+Iypthbjedf483GRQ0OGly1aB5CGHAJSc1JNGmEpTgGDzH463P16XmS3tOOgll4+HIlTn/G+HzXdHBL989aGx9+pgWMBgF4BHHimJv3JZJm2G7Gu+NGUNLuuYBCxh5vC2NWJsHltT1RNXO4IPUtwT2c6T7SnX8uqXM9PkutAD6M3tmkofl81VqhSH7SA9cT3+dg5ze8+8VhyDCtYFOBuKY/okdliaqMCbw7hzsA2EzuYWhFvIAtnyN4yOb5AFO5swe/BoziEE2WkJrpZ6wKjCZ8Z/YnE/yujS/5PGE0GqR0JFvK+0/mXFuNc2Udj0hZ+Bp0sKsLgXrw29oj7+GT108lSoSoEIzGHsHmjIfhoF3Onc8CgRFAZSVS5/1xJBQap2hhJE4R1+m6/oME16n3NOo2Z3QSgXNGIxPdKtHx4A2l201xrUyOqffw0puyumh4PxjsKbhETu60GzvV/Kssf7ne7RCzNwyAgHflHpRhG2P5NocjPSKxTcRdu1Bjd4xnCh4hs0NTzevwBQAH+TnDsq1Q5MqLiiajr9Gngd/bZCqfJX66Pf83e7+ECycn62f5OWm0JD0QDjItt8FoMWE2Q0lyA/3BOysY8zA7xMcHRwrENWCBiEIoMajxPbdns1NuCBBILCd4/klgAAAb50Aac4JxkNLgIILIyj8PnOSJr/5kBeFGFc6AH4G6D09bWwaAC0IKjiNz+i5nh2Jfjf/hIvWmtCN6eCn/Nmhn40Ajg9zjvLtjpdeqfUEsHCL1cAqreCwAAWw4AAFBLAwQUAAgACAAKpug8AAAAAAAAAAAAAAAAMQAAADQ2MTVhNjAxNmMzMTY4YjNiNjA3OWVjMzU5NTAyNTRkXEJld2Vpc3NjaGVtYS5wbmeNVnlcU1cafcGNRarWBRUFuiCiwkMGhKJsFQSMbOKCYnigZbGVgBgIiw+QRSpMtT9QArIEsEAoSlARNIEERHQ0LCOLyBIIINUkEGRJgCcJk5eAZRxnOv/kd8+95373fuc793u54uJkp6q8WRkAAFUHe5vDAKDAk46fKipIf1UmDW8AgLKZg431kbCuEbbH6d/t1y1zedZASFca9Frn9PXI2mI1nuqv+RF3qPjql+ll1zIVnnNXABwXp6ilQAyiAOQyAIACfjp0sYa/wwBHBluRFi+3vSd+jA0l1i/dInHGHIcAzIo2tVbV1UFW8G62FHxmqk3NCsb8OTPdEv5On9kb1TOcR+8/1VwZH+PWnZubhxiKqDvFvr5zs4LsCp3WgPY1Lu9NUr1Lio0CCnnJyNfDIfHiKdB2RzuJWpE+u/xCOPF1INaQXYFf2dwnmhoVGtOPpod4toRvfEqs1OI81hBY9uRMQyTrkSMUsHvdRmFB8RURElJ5xOtYCdhBdpyeOBhoXZMA05HgaKsMN8ii9z2obI6Dzwbkm9ud3L/kdDaSIjnV9cGhGHwc9bMRKwsZD4c3NTUbp/vTlfisSYsx00GvoV8aCN1n8tnRxDG6eFYREWMHPGJT8zQgC/YecyxiWpC0RuN+NPsozZz2U+gz/t3WUT9venY0dkxpKdtgW2VWwGGFXv/Xt8DtvX9TcQ2OdRQYlXdWHv2H7/htWHMbIbtoO1N/MwWk9gWV3XEWDj2oJ8J9ODy9577IxoS9h+zfmRZRfR7BNW2Ia23nzGSfrdUzd8K/a4gcE0re4gq66+ZUiDtG44T3TjR1lGlOra/oHt7E5EaRza0xc8x4866eOFxCqcFsql/j6JeTdYSVexzbRsi2tTniZOOc/Enat/Q8JKU7zLAE7B5JvIlXP1RuM85P/mL18mxtTyMl30axZoOf99j5AbDKAl/m3ZgDEiMv2hm0DTQaTjhumLJuVxPavg6c29G0v3zMb/+6FW/gyXzqQ9ga2VofaMaMShpnlx+GWrTTH9d+0zqSu/eHjKH2H/RMcaW/XBtu+Mm+XOd4RJb/5etNurvYGvpPZn8jbkhLJVV4CG3hNSK3h/Ynr7rusSGHJL/ZHhxaXRTUGkgeEIflZiBf6tVSwADHcsIVvU7xzImwVGbFjTyy5ill5whdSydDgi89uWDCY8MrtzY1YUJInYblky+E2iR+O5+V2WHrJtR2j3WFbmb6W/Yr3WY1aoWl23lkVMSGR4ZPmc7Qob1x/bixEdZaO9gViocTyuzoOwrWvukoATMucF9RwUBPtTvtJC9Nd/hsRP5QdHFtfZfGIGff5P21f+DJjSck517Onk+Js9tfbjK5b2RPZKRkgjxYFhR7FclnKH6o9F7llPd8+PC5u0hKZE4InzXAz69GDLuXHIM2Z/qP6TS0QISLD8jTO8f9KLssnCIEWFE8J6G7ddChQKwrU2W0zjNCZzqf8S1Ll5z1IeXi65CxNQw4iUhN3sbHcgO0ogtijH2ruBUzNpmi75WL8taJnHsFmGo4a7iYPmH8psc1v8Gv4EJ0szYEpVmOit3Mtr59mXZ5d7QK6lGVIuFlot1XSZaYaeTnkP4WlYRzB/i7J3QkQreqcNyWcoaNR7BgKuORABvqcAAuDkyDhcSe3lOvzpoFTUZcHtB8bqaHe6FP0Q2UcB8bP1AmE3nPpudUVrm7H4qKErboKYZleoPmLSMpB+sTV5bqmYxudpi0eOQyNHgLU+DWL+HqJlGxhdeYyGkaRqFUUYiNLPNU4yVzlxeq36h+piYx5dauyqxAaPIm8+Jt4tbZ1dgSKlbWf/xEx/p6uV/dYegL6wlLlm5xgQ6ZWNVYS2v4+d7V9TsIADfKEAV3GLMZt9DCFtGkamMWwmDkMaVuWrao36Hk1e+ZpeDbPLqn0kNNRynzEo/PuvUoS9oMay7FtZHCr3w8H+2PUiBc5gKhq7KQraoygPbNhcg1hLVB/zGJXsen2dpAVFTzx9anhCVokEX3QoGLNPSixGUrn6EZsOdppvYwBqDEt6vV8FT++Q5VWdE0l5GOj4lZIgcUkKeixYmRFeMLCliorsXJZVDAj+tyclzMnA/83So2QZeDN81Edx/tIN11lty0tryJogevSPzHrJI7h1gG6mob5SrMTIkM/36W3Dm7OoW7nKeSy7j9LtTgOXpajTePFSD04afOJ+TTLronTrw2D/TOMFk6RY5ysL6/6Fc0t0sv+KyCquFW3DwpW3CPNRQ6T7olMBRllj5Jx0u/cjwWlcbSPdM9aF+oLk0DuYcnnu80kwY4yf+YjxdN6f/NW/qcgYX1ebICwx0CgB3ewmVSWxnRFkeYZ0i/cAp/LbMWJ/oE1LTfBKc87ymaNEU6oW5G0neG6Ry3m416gwRdJ0k6cTk+vomS07RLiAIF3PlqE2oYjr1wKGLSP/H+goiqH3ZVzUvwY6PPs2aNDDkwE2juM8umcc55ok7O7ULGJ04ldtKY89wkPNZAXdPKUH7cDX5yO2rqwTYS/+U3HejboFQw9lkEGwnXy1EVI14zo5d/D5Tr+0n2shsukoLyX2jc5XJQ48pTAay0bzOAY1DMgeOf+vjzT/szb3Zp1VUkWIPWWiyX8kwbySNctvHqYUhjSMY3PQA/uk7CbwxUPSBLhMnoecGauQvcQivc5imlDdnJeDbwI0Kan7dsO48K3h+XeaANgmLloyMQVNh8sEigUycrcEg76WL23YWKo5omoyLEyK2zhfqnDQrV/80Tciti/upRnsOhdhtzRR8y0fzpNQCQlhtoUwOkTeZ/DCVPox0r9X9rWtkXI/0zCTjYOtmUfu8V+y9QSwcIIGKtYUkIAABzCgAAUEsDBBQACAAIAAqm6DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bcuO2Gb5unoKjzuRqzcUZZGOnIzvbaWY23Uy8XXc6O7NDUZCMmCK1JOVTJ2/TF0hzm7vc7zMVAA8SJVIiRdsrt/GNRBCEgO/7T/gB0Md/vp0F1rWIExmFJwNog4ElQj8ay3B6MlikkyNn8OevvzieimgqRrFnTaJ45qUnA2yjgS5fyK+/+MNxchndWF5gqryT4uZkMPGCRAysZB4Lb5xcCpFWyr3FrQykF9+9Gf0o/DRZ3sga+TacL9SvpPFClfmz8WuZFJcvzQ/OA5l+I6/lWMRWEPknA0ZV19W3dyJOpe8FJwMCshJ0MkBrN1UR1ncvo1jeR2Gqqy8bn6gSy0rkvVBPAl12/NIM9Fgs/ECOpRfqwZh+qEqWdSPH6aVCD3Gk2hRyeqk66yAna86Ponh8fpekYmbd/lPEkarpYpszl7oMui5FxOED6y67dYSI7XKAgcMdh7oOo46CUfVZdYa4tksAg5xyDl0OCVWPNd8zvy6uz0WaKjoTy7sVS6CnsRxXLr5NTqNgWTSPZJieefN0ERtZwHnReXqnf06BF+txDsNpIPIyNXj/UvhXo+j23IAHcdb027u5ecR0aDQ9i4IotmJNixrANP8cZZ+mju5pWQuYOsDUyNvQjZb3oYtMDfM5yj5NrUCGWdfykcNi1BAUPyMTSxeoxrUIl4MPvJFQIjGwFqFMXxcXSnSu8qHC7IG/LWYjpTurwlO2CR+qzeOXa2J3fCXiUASZbIWK20W0SKxrLcTZb5mOjIUvZ+oyu5FD4mm6/q46kJWOxTQWRcczzcsAM3fBqvyuFR+/LDqh+5CovvqpMiFqPKkey6m4EQqHsUisUy+RyY0Mr0SQeOm9SLT2p0rzTgYze2oPrLGXqie0NRGBmAmle6mRl3AxE7H0S+TOlXDpVoLf/h1OxUB3TfVnkfeK2Xl3jS2KjFkpDEjewJIkdbtBvJQBml966psNcyHy7pSJWcXDtPZdNM5/OK+XBMYWzaQyo1Sb0Zl3qyVNf/VGSRQsUnHuK7TD15HvpcbcZr3LrYcySLqueogQ/eVOjQkZgzyRt2KpmKs2a4XupbCnl0qmQpEkRiPTVd3zQiUShidljea5vU/mQjdvvhe1rbkat9H78ieUGGb0bBBl7EKJ8nDQlwVjDkoewFYe3kwmiUg1akcYG9AQqqUpf8hgmZUsO2IkPNGNgBz5I66/3GeomDqZ8dPm3jyMu0By+pkgcTNAWA9AnL0B8aPZzAvHVujNFCDnYqrLDRBSO3fLA1pWLA9qfLLBL9Lihp+1lrexAW+St1YA6A9aq8BDmYf2YkkyFraRsCmATg43Le1aq9GJj2FWJ8l8ipypQMmXaQlwoLX62zBVHkYYi73pOK6EmGuP/SZ8G3thoiO+qnw0s3wmYz8Q9SSvme91xsfbGVdOZsUVjPfku+qKH5LwDUrb0SWnIrxWXYvixLJuQW6F70AuCPdFya0C8CiTDZgX3cMVZVRWPZa31rCoPyxqDZEOw8w3nDc6JEVbQ3oy4HaD6Ci34MuJ9Pdg/LQV46IL4+J3xjswzvkm484DMV4ajzXSxxnpeg6HVvq5QvjZdsKrPvNsL5/JiOFSf4yyj+4GG+YeD5J2JruI1o6QTRF3GAGEAgAIAuTRPObZBrijbh5zdAgeE9YTgAo8t6rbkoAjYhOOIKYuJa6aTzvmcZJ7UOQ8Jw9az/ppE+teN9a9w2U9D3v6MH5UUM5tzjlwOMPqJmOYPx/+h+F0EXjxqUyMj2jSfmNjN8PmyXZx0ACUNE4O36MuCYe5jQU5w4bqhyG1u6ebZCz4G/BfdHFwF60dnIqExjKbtavab/LKVw/o/bYgj1Hh3sxURIPv7OfQfvDu1oA8y4C82ADyZjuQsWqpgOnmYU1aa6z7zgvzWWHrGKPG3pXKALntOA4l2IHqroM38p+Ha+86+rtpN383bRYOnZtuKR0rI60XD7kpHuupbQofQhkf0O9tjP8gBaEx3L3sJgiX/xeC0DLk/fzUV8mSM2+6BPlUBmNo6JpI1aVMOkbUg4Jz7I84Br4ScnfkUeGxse+M6cRl77MFh8S/FDPPnofTrFMyPPX8q2kcLcLxRo+T1IvT77ULs0Kz5mIMuTG2XCvQ8q+Y3gFUndD1DZ5WOrPbtcAdoXSbzG4XDtA6B4RB6jEAmY8hc0Z4xAB3ha9lECBKxq05WFnGbaaAVCjIDZ3OZPXmoEmlPwMFt/NY9Vdbkbw7b8VtqgyEunEy+PLjIkq/2raSltUwrVbZTFUzg2qbDwjDrkndJgx6QT0RsZwsNwaYBWI2KEwO2BCILBtOHbD6B3M5sHFFDHaDiiqgvotib5GoSOx+EU7bo4jao1jvH358NIjXgIPELnUG2MRpBKsy4FEUBcILy/H8uL7Iumo9n0aWlgGzg3jm5LjbDMRuQcAVQfCs94qpqTVqLwS4rxDUBAkPJAQyee29Ff/YYmWzJT3MStEAZE299pETeUhyQklmJIizZcltt5yQipz8VQbBJLnKdjpcGUrvF7GVGefJb79exp0MCTlMcwxKc4xqJcctJYfYmHQzwLSC54XxYpdeMJIiFqHq4I11rR5oDyHtq4a95vRdbLFrK0nMUXO7gcYqoL03u3es4dlpe5jY4cLUzlopT4ZL+Eiz0G01UFeHZKBYPltDgPYxUHwtTJzGv/0ajpUZsvQ+JGWwqvaqvcjw52ucakJFatNuOudUcH11K5NUhPeWnr28kspSLVI5vRIyNTBv2LEOODt9VTN4OgvmVqLwXB+ZDZuj8K36GByWPhb7pHoFDO5DzDDc56p7iBVJEtg82aif7oK+EblqoacmzT63k1Pt0tqUE4LuWh5kH32bHZa+ZWsfbi91g+tpkktvMU87KRs80KzILm2DyGasxh4r3asKEW+Slo01540tXGfFzkyz0jzMQVjm3z/9J2uzKQFvQtUSSFV7TQCB7RAImMM4oIy7GKBd0rhrjS5sIgqCTarabu7ukmT0Yn+5Fqp/NCsNgujmBzEJxK3BucNGgKZ9dcOMlM1FkU8/dyLl599J2UlKg/FBaxMzPYTccb0fidTrYIR6JxUbMX4q54VtVlqgPQPC8JAclINo5qC2gNNCRqqZxr9EwVToLJGl4sK+UzTYIQl5SJ5rmUBitjIwjgOBi11MuQs7ztJgNT/3KlFXaqamZmGpdfHC4HvuX4YyVcYxvEpNcunGmqlpWweUO6Tp6lUzesIZGmeEqqmMixxGGSsObWC0xBhw3BHkatLufXQtYm11/zU8/akDjL1TdY8HY0sLx21CKEbMdSHjRf5GybBDOMUOI4Rw4LA9g/PokGxfMTi87RhVC8lhW7NTpTHsIEUdMpkHZvIo5dDFDmSOQwrNdGwAHBdylxIHUtYcqjfgW83+vRYq4LNgBzQ7JPnqdXL+VKbNzI0ZpZAjArGKSgsAGXAZhtiFCACX7rl0NT8o5cvjKOzwdsq3e8pQ3TG8udPy0y8fhp0mDbr+xrSBI5cjZRgZUjaSMdx32vBxE1sI8lPeANWciHz0qYP7CNO5ix27uRXWpx25Of2dmx6zumrq//3UU6h/GBbzuuyyw9ob7J3hr8H6ibcKQJdgAgCHmGBGym0DDCOAMXKx8lyus6ft/XhItrfYNkC3HftqIUPVZYAbS01KNleJzHTk0y8dRKnDwkC9KMVP5q+x8syAK+9czO9yqYE20m9IQS5xHA6w2zzj2yo18SFJjX7JSyY1Ww7Zd9303HgsItnuDdY3PSdPs+k53YQVUrwCrLnaV7oe4wzEAWyArt+kCBrm22cXPxVeaLWsw87F3ktkNSw/qSvitusSFWAg6iJIEYKsNCsEIpeVFmfPDGR6SGaFkmwiQEnLiUCDPFXXyNJYXksv6CA1HRbI6qVm8WReh9qclREJd5bS4biYYkghgICDPYVjcUjCUfoc0nIjbNXnfB8Fd9MorJ8nXjQtLb2Tqj3/CuZHHz/ArKJnvuCTwc0HuN05zfOfLcApG2wd8/cQw+tNFspzOSA7LWk+Sy7oBhdt02Hb31Pz4aHH235Ie/vd4pU0z+VA/Y4j8HtT0OrsziNxUH/eqwh+ntX5z+303DxHDdl+KvPo0BWm6h++k3Hc9OKBmw2/MPzSm0fJV7tsf+UFcfkjvZ3nrpei4Xbsla84Y7Zb/evz+pZaGC+aYLzoDuNFE4xtXtDQ6U0BLXHUbwqo24Db87UBtUCeNQF51h3Isz7y+BhAPtILhRoCv3z0WfhXXqAKlLWh4OqD/uqDXnmhA8N2hNQHhyvMPIMQcQu9HULERxlzHyfY2oyqyTd3CHS50n1E0aujYo6Oaw3rEeJr5UUO7SC95I6wshdtjxJatuSt4Z0SDXT+j0Wbz1XZ1jjjbmWGdrT+IhB80BTV565Q096ji7PNZOipKuyQ1+q957LGW7RP62zluG02VG88yneUQAiLs94qBHMxZy5GCGGtovvlu64/T75rFZiaZGi/A72ouh8TvrDQCwu/sM4vzjtITu/T3/ePJjmbGVHoIGUBOCQMUUJ4KSOUry7q7pkTvT8kGSlzonzLGwRbyEh1V+lwkVjEmkTBNLUW4UymqQhGXmyNpbCWB07sL/8IweoWtz91kKdHPwneRWSIzV2gt4swChmgqFjvx7ZDqcMQYI7LKEXN6/31qFa3kX4jJjLMFEPvBfwmFlLF+non9FSNPLzvgF7vnaWjD/CpwKU2oRA4KgCg0CEYFCsUSk2VPgIVanEHALTnCedRnjc7EH0kKItIOGxps1+u/hcJfV38x5mv/wtQSwcI8ERz8voNAACjZgAAUEsBAhQAFAAIAAgACqboPL1cAqreCwAAWw4AADEAAAAAAAAAAAAAAAAAAAAAAGI1YTFlNzczY2I3MzBjNzcwOWJhNWVhNmRjOGQ1Zjk2XEJld2Vpc3NjaGVtYS5wbmdQSwECFAAUAAgACAAKpug8IGKtYUkIAABzCgAAMQAAAAAAAAAAAAAAAAA9DAAANDYxNWE2MDE2YzMxNjhiM2I2MDc5ZWMzNTk1MDI1NGRcQmV3ZWlzc2NoZW1hLnBuZ1BLAQIUABQACAAIAAqm6DzwRHPy+g0AAKNmAAAMAAAAAAAAAAAAAAAAAOUUAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwD4AAAAGSMAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" /> | ||
+ | |||
+ | == Das Mittelsenkrechtenkriterium == | ||
+ | ===== Satz VII.6: (Mittelsenkrechtenkriterium) ===== | ||
+ | ::Eine Menge <math>\ M</math> von Punkten ist genau dann die Mittelsenkrechte einer Strecke <math>\ \overline{AB}</math>, wenn für jeden Punkt <math>\ P \in\ M</math> gilt: <math>\overline{AP} \cong \overline{BP}</math>. | ||
+ | |||
+ | Bezug zur Schule: | ||
+ | Konstruktion der Mittelsenkrechten einer Strecke <math>\overline{AB}</math> mittels Zirkel und Lineal: | ||
+ | |||
+ | <u>Konstruktionsvorschrift:</u> | ||
+ | |||
+ | <u>gegeben:</u> Strecke <math>\overline{AB}</math> | ||
+ | |||
+ | <u>gesucht:</u> <math>\ m</math> , die Mittelsenkrechte von <math>\overline{AB}</math> | ||
+ | |||
+ | |||
+ | {| class="wikitable center" | ||
+ | |- style="background: #DDFFDD;" | ||
+ | ! Schrittnr. | ||
+ | ! Konstruktionsschritt | ||
+ | |- | ||
+ | | 1. | ||
+ | | Zeichne einen Kreis um <math>\ A</math>, dessen Radius <math>\ r</math> länger als die Hälfte der Länge der Strecke <math>\overline{AB}</math> ist. | ||
+ | |- | ||
+ | | 2. | ||
+ | | Behalte <math>\ r</math> bei und zeichne einen Kreis um <math>\ B</math>. | ||
+ | |- | ||
+ | | 3. | ||
+ | | Der Kreis um <math>\ A</math> schneidet den Kreis um <math>\ B</math> in den beiden Schnittpunkten <math>\ S_1</math> und <math>\ S_2</math>. | ||
+ | |- | ||
+ | | 4. | ||
+ | | Zeichne die Gerade <math>\ S_1S_2</math>. Sie ist die gesuchte Mittelsenkrechte von <math>\overline{AB}</math>. | ||
+ | |} | ||
+ | |||
+ | <u>Frage:</u> ''Ist dieser Algorithmus korrekt?'' Anders gefragt: Ist <math>\ S_1S_2</math> wirklich die Mittelsenkrechte von <math>\overline{AB}</math>? | ||
+ | |||
+ | Wir beweisen die Korrektheit der Konstruktion indem wir folgendes zeigen: | ||
+ | |||
+ | ===== Satz VII.6 a: (hinreichende Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von <math>\overline{AB}</math>gehört.) ===== | ||
+ | ::Wenn ein Punkt <math>\ P</math> zu den Endpunkten der Strecke <math>\overline{AB}</math> jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von <math>\overline{AB}</math>. | ||
+ | |||
+ | ===== Beweis von Satz VII.6 a ===== | ||
+ | |||
+ | Übungsaufgabe 11.7 (Das Video hilft) | ||
+ | |||
+ | {{#ev:youtube|SV7e7lTCPps}} | ||
+ | |||
+ | |||
+ | Nach dem Beweis von Satz VII.6 a wissen wir, dass die beiden Punkte <math>\ S_1</math> und <math>\ S_2</math> Punkte der Mittelsenkrechten von <math>\overline{AB}</math> sind. | ||
+ | |||
+ | Die Wahl des Radius <math>\ r</math> der beiden Kreise in unserer Konstruktion war beliebig für <math>\ | r | > \frac{1}{2} | \overline{AB} |</math>. Wir stellen uns jetzt die frage, ob wir jeden beliebigen Punkt unserer Mittelsenkrechten als Schnittpunkt zweier entsprechender Kreise konstruieren könnten. | ||
+ | |||
+ | Die Frage anders formuliert: | ||
+ | |||
+ | Hat jeder Punkt der Mittelsenkrechten von <math>\overline{AB}</math> zu den Punkten <math>\ A</math> und <math>\ B</math> jeweils ein und denselben Abstand? | ||
+ | |||
+ | Noch anders formuliert: | ||
+ | |||
+ | Hat jeder Punkt der Mittelsenkrechten einer Strecke <math>\overline{AB}</math> notwendigerweise zu <math>\ A</math> und zu <math>\ B</math> ein und denselben Abstand? | ||
+ | |||
+ | Der folgende Satz VII.6 b beantwortet diese beiden Fragen postiv: | ||
+ | |||
+ | ===== Satz VII.6 b (notwendige Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von <math>\overline{AB}</math> gehört)===== | ||
+ | ::Wenn ein Punkt <math>\ P</math> zur Mittelsenkrechten der Strecke <math>\overline{AB}</math> gehört, dann hat er zu den Punkten <math>\ A</math> und <math>\ B</math> ein und denselben Abstand. | ||
− | [[ | + | [[Lösung von Aufgabe 11.8 ]] |
Aktuelle Version vom 8. Juli 2010, 20:06 Uhr
Inhaltsverzeichnis |
Der Basiswinkelsatz
Gleichschenklige Dreiecke
Definition VII.4 : (gleichschenkliges Dreieck)
Das können sie selbst. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.
Ein Dreieck mit zwei zueinanderkongruenten Seiten heißt gleichschenkliges Dreieck. Die beiden zueinander kongruenten Seiten heißen Schenkel des gleichseitigen Dreiecks. Die dritte Seite des gleichschenkligen Dreiecks heißt Basis. Die Innenwinkel eines gleichschenkligen Dreiecks, dessen Scheitelpunkte die Eckpunkte der Basis sind heißen Basiswinkel des gleichschenkligen Dreiecks. --Rakorium 07:14, 8. Jul. 2010 (UTC)
Der Basiswinkelsatz
Satz VII.5: Basiswinkelsatz
- In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
Für die Schule ok. hier jedoch nicht zugelassen
Es sei ein Dreieck mit den schulüblichen Bezeichnungen. o.B.d.A. seien die Seiten und kongruent zueinander:
Nach der Existenz und Eindeutigkeit des Mittelpunktes einer Strecke existiert der Mittelpunkt der Dreiecksseite .
Wir werden jetzt zeigen, dass die beiden Teildreiecke und kongruent zueinander sind:
Nachweis von :
Nr. | Skizze | Beweisschritt | Begründung |
---|---|---|---|
(1) | Voraussetzung | ||
(2) | ist Mittelpunkt von | ||
(3) | trivial (oder Reflexivität der Kongruenzrelation) | ||
(4) | (1), (2), (3), SSS |
Wegen (4) gilt nun auch .
w.z.b.w.
Ein schöner einfacher Beweis, leider hat er hier keine Gültigkeit. Warum?
Dieser Beweis ist so nicht machbar, da der Basiswinkelsatz hier mit dem Kongruenzsatz SSS bewiesen worden ist. Allerdings braucht man für den Beweis des SSS den Basiswinkelsatz. Somit kann man den Kongruenzsatz SSS bei dem Beweis des Basiswinkelsatzes nicht verwenden. --Mirasol 08:00, 6. Jul. 2010 (UTC)
Ein im Rahmen unserer Theorie korrekter Beweis des Basiswinkelsatzes
Probieren Sie ruhig weitere Varianten: Mittelsenkrechte ... . Letztlich hilft nur die Winkelhalbierende. Damit wir uns auf die wesentliche Beweisidee des Basiwinkelsatzes konzentrieren können, schicken wir ein Lemma voraus.
Lemma 1
- Die Winkelhalbierende eines Winkels schneidet die Strecke in genau einem Punkt .
Beweis von Lemma 1
später (Wir haben wichtigeres zu tun.) googeln Sie: "Geschichten aus dem Inneren Gieding" und Sie werden fündig.
Beweis des Basiswinkelsatzes
Das Mittelsenkrechtenkriterium
Satz VII.6: (Mittelsenkrechtenkriterium)
- Eine Menge von Punkten ist genau dann die Mittelsenkrechte einer Strecke , wenn für jeden Punkt gilt: .
Bezug zur Schule: Konstruktion der Mittelsenkrechten einer Strecke mittels Zirkel und Lineal:
Konstruktionsvorschrift:
gegeben: Strecke
gesucht: , die Mittelsenkrechte von
Schrittnr. | Konstruktionsschritt |
---|---|
1. | Zeichne einen Kreis um , dessen Radius länger als die Hälfte der Länge der Strecke ist. |
2. | Behalte bei und zeichne einen Kreis um . |
3. | Der Kreis um schneidet den Kreis um in den beiden Schnittpunkten und . |
4. | Zeichne die Gerade . Sie ist die gesuchte Mittelsenkrechte von . |
Frage: Ist dieser Algorithmus korrekt? Anders gefragt: Ist wirklich die Mittelsenkrechte von ?
Wir beweisen die Korrektheit der Konstruktion indem wir folgendes zeigen:
Satz VII.6 a: (hinreichende Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von gehört.)
- Wenn ein Punkt zu den Endpunkten der Strecke jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von .
Beweis von Satz VII.6 a
Übungsaufgabe 11.7 (Das Video hilft)
Nach dem Beweis von Satz VII.6 a wissen wir, dass die beiden Punkte und Punkte der Mittelsenkrechten von sind.
Die Wahl des Radius der beiden Kreise in unserer Konstruktion war beliebig für . Wir stellen uns jetzt die frage, ob wir jeden beliebigen Punkt unserer Mittelsenkrechten als Schnittpunkt zweier entsprechender Kreise konstruieren könnten.
Die Frage anders formuliert:
Hat jeder Punkt der Mittelsenkrechten von zu den Punkten und jeweils ein und denselben Abstand?
Noch anders formuliert:
Hat jeder Punkt der Mittelsenkrechten einer Strecke notwendigerweise zu und zu ein und denselben Abstand?
Der folgende Satz VII.6 b beantwortet diese beiden Fragen postiv:
Satz VII.6 b (notwendige Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von gehört)
- Wenn ein Punkt zur Mittelsenkrechten der Strecke gehört, dann hat er zu den Punkten und ein und denselben Abstand.