Diskussion:Hauptseite SS10: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Begriffsklärung)
Zeile 5: Zeile 5:
  
 
Tragen Sie Ihre Frage bitte oben ein, sodass die neuesten Fragen immer ganz oben stehen Selbstverständlich können Sie auch hier Bilder, geometrische Konstruktionen etc. einbinden!
 
Tragen Sie Ihre Frage bitte oben ein, sodass die neuesten Fragen immer ganz oben stehen Selbstverständlich können Sie auch hier Bilder, geometrische Konstruktionen etc. einbinden!
 +
 +
 +
== Ellipse ==
 +
In der pdf zur Mengenlehre steht unter 0.1.2. zur Ellipse, dass die Bedingung "Betrag von F1P + Betrag von F2P = Betrag von 2r" bei einer Ellipse erhalten bleibt. Der "Betrag von r" soll "die Länge eines beliebigen Radius von k" (Kreis) sein. Ist mit 2r im Falle der Ellipse dann der ursprüngliche Radius des Kreises gemeint, bevor man F2 verschoben hat? Weil eine Ellipse hat doch gar keinen Radius... Soll das eine Definition sein, oder sich auf eine bestimmte Ellipse beziehen?
 +
--[[Benutzer:Kuckuck|Kuckuck]] 19:01, 2. Mai 2010 (UTC)
 +
 
== Parallele Sonnenstrahlen? ==
 
== Parallele Sonnenstrahlen? ==
 
Wir haben uns gestern in der Vorlesung mit der Bestimmung des Erdumfangs nach Eratosthenes beschäftigt. Dabei kam die Frage auf, woher Eratosthenes wusste, dass die Sonnenstrahlen annähernd parallel auf die Erde treffen. Schließlich wusste er noch nichts über Größe und Abstand der Sonne von der Erde.
 
Wir haben uns gestern in der Vorlesung mit der Bestimmung des Erdumfangs nach Eratosthenes beschäftigt. Dabei kam die Frage auf, woher Eratosthenes wusste, dass die Sonnenstrahlen annähernd parallel auf die Erde treffen. Schließlich wusste er noch nichts über Größe und Abstand der Sonne von der Erde.

Version vom 2. Mai 2010, 20:01 Uhr

In der Diskussionsecke können Sie beliebige Fragen, Probleme, Ideen, ... zur Geometrie einstellen. "Unterschreiben" Sie Ihre Beiträge am besten mit Ihrem Pseudonym, indem Sie "--~~~~" eingeben oder auf den "Signatur"-Button klicken:

Signaturbutton.gif


Tragen Sie Ihre Frage bitte oben ein, sodass die neuesten Fragen immer ganz oben stehen Selbstverständlich können Sie auch hier Bilder, geometrische Konstruktionen etc. einbinden!


Inhaltsverzeichnis

Ellipse

In der pdf zur Mengenlehre steht unter 0.1.2. zur Ellipse, dass die Bedingung "Betrag von F1P + Betrag von F2P = Betrag von 2r" bei einer Ellipse erhalten bleibt. Der "Betrag von r" soll "die Länge eines beliebigen Radius von k" (Kreis) sein. Ist mit 2r im Falle der Ellipse dann der ursprüngliche Radius des Kreises gemeint, bevor man F2 verschoben hat? Weil eine Ellipse hat doch gar keinen Radius... Soll das eine Definition sein, oder sich auf eine bestimmte Ellipse beziehen? --Kuckuck 19:01, 2. Mai 2010 (UTC)

Parallele Sonnenstrahlen?

Wir haben uns gestern in der Vorlesung mit der Bestimmung des Erdumfangs nach Eratosthenes beschäftigt. Dabei kam die Frage auf, woher Eratosthenes wusste, dass die Sonnenstrahlen annähernd parallel auf die Erde treffen. Schließlich wusste er noch nichts über Größe und Abstand der Sonne von der Erde. Hat jemand eine Idee? --Schnirch 10:08, 20. Apr. 2010 (UTC)

Hm... also ich hoffe ich mache das richtig, wenn ich hier meine Idee hinschreibe. Vllt. hat er den Schatten eines Gegenstandes mit geraden, parallelen Kanten aufgestellt (ich habe es mit einer Streichholzschachtel probiert) und dessen Schatten beobachtet. Die Kanten, die bei dem Gegenstand parallel sind, sind nun auch bei dem entstandenen Schatten parallel. Da die Lichtstrahlen für den Schatten verantwortlich sind, müssen sie auch parallel verlaufen.--Andreas 18:41, 20. Apr. 2010 (UTC)

ja, hier ist der richtige Platz für Ihre Ideen, vielen Dank für Ihre Antwort! Ich finde Ihre Idee sehr schön. Das Schattenbild eines Gegenstandes, das z. B. durch eine punktförmige Lichtquelle angestrahlt wird hat tatsächlich die Eigenschaft, dass die Schatten paralleler Kanten, die nicht parallel zur Bildebene liegen, sich im sogenannten Fluchtpunkt schneiden. Allerdings stellt sich mir die Frage, ab welcher Gegenstandsgröße dies nachweisbar wäre. Wir haben es hier ja mit Beobachtungen zu tun, die sehr weit auseinander liegen (Alexandria - Assuan). --Schnirch 12:43, 21. Apr. 2010 (UTC)


Am Bildschirm lesen

WEB2.0 ist für Leute, die zu blöd sind, sich selbst eine HTML-Seite zu generieren. So war meine Meinung bisher. Das Ganze hat auch damit zu tun, dass ich nicht gern am Bildschirm lese. Letztlich drucke ich mir lieber ein PDF aus, als dass ich längere Passagen am Bildschirm lese. Vielleicht ist das ja bei mir auch altersbedingt.--*m.g.* 03:46, 29. Apr. 2010 (UTC)

Ja, das könnte altersbedingt sein. ;-)) --Spannagel 08:41, 2. Mai 2010 (UTC)

Felix Klein

Was meinen Sie hierzu?

„Soll ich mich im allgemeinen Sinne über Pädagogik äußern, so will ich folgende Betrachtung vorausschicken: Man kann das pädagogische Problem mathematisch formulieren, indem man die individuellen Qualitäten des Lehrers und seiner n Schüler als ebensoviele Unbekannte einführt und verlangt, eine Funktion von (n + 1) Variablen F(x0,...,xn) unter gegebenen Nebenbedingungen zu einem Maximum zu machen. Ließe sich dieses Problem eines Tages entsprechend den bisher realisierten Fortschritten der psychologischen Wissenschaft direkt mathematisch behandeln, so wäre die (praktische) Pädagogik von da ab eine Wissenschaft, — solange das aber nicht der Fall ist, muß sie als Kunst gelten."

(F. Klein (1849 - 1926) in seinem Vortrag: „Über Aufgabe und Methode des mathematischen Unterrichts an Universitäten")

Begriffsklärung

In der gestrigen Vorlesung bei Herrn Gieding fiel auf, dass er die Begriffe gleichlang sowie kongruent "anders" verwendet als Herr Schnirch. Daher sollte geklärt werden, ob wir die beiden Wörter als gleichwertige Synonyme gebrauchen oder ob kongruent mathematisch korrekter, d. h. formaler, als gleichlang ist.

Rückfrage: Was bedeuten die Aussagen "zwei Dreiecke sind kongruent" und "zwei Dreiecke sind gleichlang"? --Spannagel 08:42, 2. Mai 2010 (UTC)
Die erste Aussage bedeutet für mich, dass es sich um 2 deckungsgleiche Dreiecke handelt. Mich irritiert die zweite Aussage. Eventuell kann man von "gleichgroßen" Dreiecken sprechen (d. h. bedeutungsgleich zur ersten Aussage) - aber gleichlang? Bei z. B. Strecken würde ich den Begriff verwenden, aber nicht bei Flächen oder Körpern. --Pünktchen 16:16, 2. Mai 2010 (UTC)
@Spannagel und für alle die am Freitag nicht dabei waren: Die Problematik bezog sich auf die Kongruenz von Strecken und Winkeln.--*m.g.* 18:21, 2. Mai 2010 (UTC)