Lösung von Aufgabe 5.5 (SoSe11): Unterschied zwischen den Versionen
HecklF (Diskussion | Beiträge) |
Flo 21 (Diskussion | Beiträge) |
||
Zeile 22: | Zeile 22: | ||
| 3) durch A geht eine Gerade, die parallel zu a ist || 2), Parallelenaxiom | | 3) durch A geht eine Gerade, die parallel zu a ist || 2), Parallelenaxiom | ||
|- | |- | ||
− | | 4) eine weitere Gerade geht durch A und ist nicht parallel zu a (hm... ich verstehe die Beweisführung bzw. dieses Argument an dieser Stelle nicht und warum ist das ein Widerspruch zur Annahme? Vllt. wäre eine Skizze an dieser Stelle nicht schlecht.)--[[Benutzer:Andreas|Tutor Andreas]] 13:42, 6. Mai 2011 (CEST)|| Def. Schnittpkt von Geraden | + | | 4) eine weitere Gerade geht durch A und ist nicht parallel zu a (hm... ich verstehe die Beweisführung bzw. dieses Argument an dieser Stelle nicht und warum ist das ein Widerspruch zur Annahme? Vllt. wäre eine Skizze an dieser Stelle nicht schlecht.)--[[Benutzer:Andreas|Tutor Andreas]] 13:42, 6. Mai 2011 (CEST)Und wie füge ich eine Skizze ein? Wie füge ich die ganzen mathematischen Zeichen ein? Ich habe nur von oben kopiert. --[[Benutzer:Flo 21|Flo 21]] 19:55, 8. Mai 2011 (CEST)|| Def. Schnittpkt von Geraden |
|- | |- | ||
||| Widerspruch zur Vor. | ||| Widerspruch zur Vor. | ||
− | |} | + | |}--[[Benutzer:Flo 21|Flo 21]] 19:55, 8. Mai 2011 (CEST) |
<br /> | <br /> | ||
Voraussetzung: a, b, c sind paarweise verschiedene Geraden, <math>\ a \| b </math>, <math>\ b \| c </math> <br /> | Voraussetzung: a, b, c sind paarweise verschiedene Geraden, <math>\ a \| b </math>, <math>\ b \| c </math> <br /> |
Version vom 8. Mai 2011, 18:55 Uhr
Das Parallelenaxiom lautet wie folgt:
Zu jeder Geraden g und zu jedem nicht auf g liegenden Punkt A gibt es höchstens eine Gerade, die durch A verläuft und zu g parallel ist.
Nutzen Sie dieses Axiom, beim Lösen der folgenden Aufgabe:
Es seien a, b und c drei paarweise verschiedene Geraden in ein und derselben Ebene.
a) Beweisen Sie folgende Implikation durch einen Widerspruchsbeweis: .
b) Welche Eigenschaft der Relation auf der Menge aller Geraden einer Ebene haben Sie hiermit gezeigt?
Ich mache mal einen Anfang:
Vor.: a, b und c sind drei paarweise versch. Geraden
Beh.: .
Annahme: a nicht parallel zu c
Beweisschritt | Begründung |
1) a,b,c sind 3 paarweise versch. Geraden | Vor. |
2) es existiert ein Pkt A, der nicht auf der Geraden liegt (welche Gerade ist hier gemeint?) | Axiom I/0 |
3) durch A geht eine Gerade, die parallel zu a ist | 2), Parallelenaxiom |
4) eine weitere Gerade geht durch A und ist nicht parallel zu a (hm... ich verstehe die Beweisführung bzw. dieses Argument an dieser Stelle nicht und warum ist das ein Widerspruch zur Annahme? Vllt. wäre eine Skizze an dieser Stelle nicht schlecht.)--Tutor Andreas 13:42, 6. Mai 2011 (CEST)Und wie füge ich eine Skizze ein? Wie füge ich die ganzen mathematischen Zeichen ein? Ich habe nur von oben kopiert. --Flo 21 19:55, 8. Mai 2011 (CEST) | Def. Schnittpkt von Geraden |
Widerspruch zur Vor. |
Voraussetzung: a, b, c sind paarweise verschiedene Geraden, ,
Behauptung: a ist nicht parralel zu c
zu zeigen: b schneidet c, B ist Schnittpunkt der Geraden b und der Geraden c
Nummer | Beweisschritt | Begründung |
(1) | a, b, c sind paarweise verschiedene Geraden | Vor. |
(2) | Vor. | |
(3) | Vor. | |
(4) | B ε b | Festlegung, Schnittpunkt b, c |
(5) | B ε c | Festlegung, Schnittpunkt b, c |
(6) | b nicht parallel zu c | Parallelaxiom, (4), (5), Wiederspruch zur Annahme, dass |
somit wäre aus meiner sicht bewiesen, dass a auch parallel zu c ist. Falls dieser Beweis so stimmt:
Wie gehe ich mit folgenden Punkten um:
Das hab ich geschrieben | das gefällt mir daran überhaupt nicht | so wäre es richtig |
zu zeigen: b schneidet c, B ist Schnittpunkt der Geraden b und der Geraden c | das kann irgendwie nicht sein, weil das möchte ich eigentlich gar nicht zeigen. ich möchte vielmehr zeigen, dass a grad nicht parallel zu c ist, aber das ist ja meine Behauptung - irgendwie doppelt gemoppelt, oder? außerdem habe ich gar nicht gezeigt, dass b c schneidet | |
"Festlegung, Schnittpunkt b, c" in Beweisschritt 4 und 5 | ich glaube, dass man das irgendwie anders schreiben sollte - das scheint mir aber wenig professionell |
Dankeschön --Flo60 22:05, 7. Mai 2011 (CEST)
vielleicht ist aber auch das einfacher und bedeutend klüger:
Voraussetzung: a, b, c sind paarweise verschiedene Geraden, ,
Behauptung: a schneidet c
zu zeigen: a ist nicht parralel zu b (bzw. b ist nicht parallel zu c)
Nummer | Beweisschritt | Begründung |
(1) | a, b, c sind paarweise verschiedene Geraden | Vor. |
(2) | Vor. | |
(3) | Vor. | |
(4) | A ε a | Schnittpunkt a, c |
(5) | A ε c | Schnittpunkt a, c |
(6) | a nicht parallel zu b | Parallelaxiom, (4), (5), Wiederspruch zur Annahme, dass |
--Flo60 22:27, 7. Mai 2011 (CEST)
b) Wenn eine Gerade a parallel zu einer Gerade b ist und eine Gerade b zu einer Geraden c pparallel ist, dann ist auch eine Gerade a zu einer Geraden c parallel. Durch das "und" wird deutlich, dass beide Teilaussagen wahr sein müssen, damit die Gesamtaussage wahr wird. --Flo 21 15:30, 5. Mai 2011 (CEST)
Diese Eigenschaft, dass wenn a zu b und b zu c in Relation steht dann auch a zu c in Relation stehtnennt man Transitivität.Klemens 19:36, 5. Mai 2011 (CEST)