Satz des Thales: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Sehnen verschieben)
(Umkehrung Satz des Thales)
 
(35 dazwischenliegende Versionen von 9 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
=Test=
+
=Ein wenig Didaktik=
 
Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales
 
Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales
==Geogebratest==
 
<ggb_applet width="892" height="499"  version="3.2" ggbBase64="UEsDBBQACAAIAPB56TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VnNbuM2ED53n4LQPQqpfwF2FrZ7CbBpimS7h14KWqJtNrLkUlRi5612+x77TB2Skiz/xLXzs2hQXygNyeHM980MSbn3cTnP0D0TJS/yvkVsbCGWJ0XK82nfquTkLLI+XnzoTVkxZWNB0aQQcyr7lms7lpJX/OLDT71yVjwgmukhXzh76FsTmpXMQuVCMJqWM8bkhpxWS55xKlbX4z9ZIst1h1FymS8qWEWKCmTJPP3Ey+b1XC+4yLj8md/zlAmUFUnfCnwwHZ6+MCF5QrO+5WEjcfqWs9UJIlf1zgrBH4tcquFr5ROQIFTyRwYzsZL1zrWjPVYlGU85zZUz2g4YhNADT+Wsb0WxAyoZn87AVi8OjbakKER6uyolm6Pl70wU0Odhm7hOHDkhiUM/Diy0Mj2OF9pOHIehF2Dfhx4XMASDwRI3tP3AD8Erz8dhFMUw6ckuvTK7v2VSApMloku2xngqeLrxclkOi2wtWhQ8lyO6kJXQYeDWolu5UqsBbkL5OMinGatl4HgyY8nduFjeatyIa1R/Xi30FG3QeDoqskIgoRjxYUDdjk2rxyhL21FYj8F6RK1DKW37iUJ8Wrdj0+pRGc+NabXnpPGa4GYZXiIlAOUqelvnMzpmEA0WqnIuPzUvEDV3tavETPilmo8hbbpx0+okr6Wzd74Vcb07JnKWmbjKgduqqEp0r+LXrKUNSVnC5/BqOmpIqKLrNzDASFM2Fawx3CSdAUz34m7sbol7540RyoYSbE0kVA/wRypfVHJLSKy+dc8hOWmWAQIplapLT5nPaZ6inM5BcplLcBgqgKWW4yrrEcV9azkALEET6Vsr/ajNKSrZDLgyltTaVGpmbM4gb6UOOB2vLfBXVlukCl1vmspS968phO42uAJPx5Zqxqah2WJGAQW7hiejK/CwC5hWeFWke2As0dJMRau+daYfHk3F1WNMhqlyome6Nf3Gqx3cftX+7cNsG6jhKUANnwUUcUwu67bO5WOxup5MSiYVNIEBxiGHkKQ5BLaONqinC6Vepc6CsbTevGRdb9ACFtTVq5MXax58G3t6vRfyMOIigfjeJOLKBO5wh4vkMBeQTTxpsU6szUImZ1AvclaWutrKbl19mrCO813GNuvqs+P6KONgP2T5PZhWiBKhJa6JWuEG/EayJE1erEgteiQdZoB4wZdo0IwfNKMGjoob3/YwCXD7AzsGbr3GwGtUD/yOn+yv3JhfmjIMgZTwCU8Oc/4JvN5ifGgYv9phnB5mXAHYckWfSfjmJvO2jO+pZCaVHmuAT4iLLfD5HM50CZeHwX9qw0gMA3SHgcEfxHQNTimEatazMustNo3nF6uDLv7YTXFd6M/c2EQO8Y7z/6wF4KXb5i2bKvlW7AyeqtfjwyFT1toaxMb//YrdAbVJYAIPkQb19fJXo5ip/bfNV9izdw+qd4wt1A3hOv8saF6qy6UZ0zkAn3ACSnYYHJ2S9KMffvp5s/MNsaMI7pER3Iqd2ItxbPLHs4PQxy4hLgkD+MUvSaYbutrCf9SptBs0pIdpEKCpATl9T0m0B09VpQI7djbQ1zA7LtzSHeIHMfYIhsOK/36y7Umud4smO55r9v65dm3ihxgT14tD7OOYmKPQe+Zaf9fZv0Uq0p19pH//+zDr+uNDSxmMVvPBnqpGm9iAYhgHrhOEsRfFQfRvtO8vxoZ1gnd5907j/SiiqEjW1TJqhFlWPNywScaWGslN2IHdOVikvhvetB/Rttg7jZphU3Q1NaNdar6eRM3XbWqw7ccucBJhLwo9Lwy816aGvDU1oX8MNafB3tY/Dfvulvf920mwf9uFPQ6DyAt9h8QO9pz/HejXQs6KaZHTbM+Fu/7EMt6BfXLChXvynrafs/qc3r0Fvc2F+7z7VVf/91H/+XPxD1BLBwg4eFynlQUAAC4aAABQSwECFAAUAAgACADweek8OHhcp5UFAAAuGgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAM8FAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
  
<ggb_applet width="1272" height="896"  version="3.2" ggbBase64="UEsDBBQACAAIAMF76TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvdcts2Fr7ePgVHF3tnGj8EScxa6chuspOZZNOJu73YmwxFQRISitSSlCP5rbZN27foM+0BQEr8kWRTkh07U91QAkD8fN/Bd84BqYvvl7PIuhFpJpO438M26lkiDpORjCf93iIfn/m97198dzERyUQM08AaJ+ksyPs9apOeKl/IF9/97SKbJp+tINJNfpbic783DqJM9KxsnopglE2FyGvlwWIpIxmkq3fDjyLMs02F6eR1PF/AKHm6gLJwNnojs/LnuR5wHsn8B3kjRyK1oiTs91wGU4dvP4s0l2EQ9XsOMiWk3yONSiiiqnaapPI2iXPVfNP5GEosK5O3AhDxVdnFuV7ohViEkRzJIFaL0fOARpb1WY7yKbQlHoE+hZxMYbK+w0x3YZKko+tVlouZtfyPSBOYGmO24zIHu9jzMXdc2rNWpop6js1cRD2GTQsAEWYMU3G4zR1MfUoZ8T1CMIObdtfpscXNtchzIDOzgqXYwDxJ5aj243V2mUSbonki4/wqmOeLVFsCLYqu85UaDqBL1SoH8SQSRRksPZyK8NMwWV4b6Kjp+qfVXN+iJzScXCVRklqpIgUWMCmuQ3PVbdRM162QboN0i6IP1em6HnOiW+jr0Fx1q0jGZmrFynG5aozKYWRmqQLoXBnwevFRMBRgED1rEcv8TfkDDOdTsVRsbvjXYjaEnVM1nXWf+FR9Xpw3jO7ik0hjERnLioHbRbLIrBtlwmYsPZGRCOUMfpqKApJA0fVvmIApHYlJKsqJm31nANO1qGq9jeKL83ISag4ZzDXMQUBgPblai9rfOeytfu9Gwv4MoggQGAW5qlK7KBIzAVss14ah7WoN0NveWk8SLQ2lCBT1G6ihequRaHMKovk0gBK7WEUUrGAi1XXp/t4mo/pqgxhQ00uB7TpXHShe5kKMCnHMC2O25tCl3hoV0DVWmbXs985gZLDHlZ4CfLk1t+tWZiMp4dAj04JlA8od8Ay+DXgcm/sHohMms1kQj6w4mMFIVzINwbjUjVK5DCtAyoasACusDBCLvKwITWdFFy2owZRluIYy7NVVJJ/CZo1Flmmpy6uitpuPyup3EYIOp+NekwN3JOIbmFqSZpa1RAVTK2QGtG7LkiU2dgt1uCi6xRVmgPlULq1B2X5QthqAOz0jwClXGjygRccDp+R3wModYWb039jMOjPSBwYUyrEM91P9BhbbIHpgiH7bIjrYT7TCbU1RcCDPdWG/e+MdwfNm4xh6AE2m6TE7sIMtNJCXM4ijQpnvR/51nINLgkU34A8N/AFcVIxVrqrCw9V+HuradnWQtrmOxlhdhuZyPMoK3UPVuw7dtZio8gZwV7sEargfr6zorURkuNt0vVNK1FE+o228GBXGC5rQCtb2rGGf9WoYI+Vy1tYKbqodF30SYq4C0nfxT2kQZyqdMW0q8dYOT1xTjdHT9w6nctYwMHU4cpnPEOW+7zJe7o12+W2hTQ+tST9q6WjqUXM/XXbRn8uD9AcTk8Xo61OJr7Dte57rE58zyon6phlzbNdhvk+BKYJ818XHSNuPSbSaJPF2abs0PqGtcJDDRJAk4sJ1fMCmYai/QOQw/IDv4swMW7Ky7vDh9mOZqDKsGVaXNcG4C8G7taWp7AqYr7Ogw50mWBepWpexOdf2ec0UjUYQalMGosFd4mHKKGUnkoxHcARNssLnR9Z2rqiNEaHYw8hxkUcocdZkIe5zx+Wuwxkmnv98yRo+P7LWQf86cNofN311BuqOQh8SdnQTf/5vvxfQJ1lrMqC1uh/msygwxDbzkMddSlyPO6Ay/p0Z3N5gDKN2OMbuyWeXEDdIw40DdsvCKEo+vxfjSCw1lnXggd8ZzEidRL9fn8k2+OuaoFzuSqxFtwRFnDhBCZN4JE18BM3fFa0/Pkr2sl0yz3DTv5EyL6fIAddGMYL2xGf7NPOrZzr3MYriWO2qZRTjbkYxfp5Za+XIBfHG5xuhtq3Dk27UTp5+Vtwmlm1OI051lvaVvOp6h2qvetn2qr908qq/NL0q+DyOPIYg6/cZ5t6RQdK2bXoKp9pk6tGd6t0RT9uz/vlrJ25+vYMbl2+LeP5iZ//O2R2PfunEzpc2O9xHyGE+JL0O4WRrPHofdjAitYfmtQzjFPSwp0jPZemfdm2e3zrR89ud9Lh/0XOv59E/tM9MO2RVT+iJNKY2c1Dlg8vwHteKUccz033g/fObAQ/b6qhI4UVtn9TwosecMW955lv40fADbqnAdL8I1J7fTE/y1PexQtVOx3UEyh/kaPWQZ/PBFp5kB57ks+Kp0xk4IVBcOVX13QfgqQ7tMEkiEWwennxsOsLKG5ZHvGN0fyzfjceZyBV0nucXD4fZbqzvq6wvv43XpLjtETAjMCXsex6ntNRYximEKy53IGBx/RO6pFePCtyG/TOHmVz8MWB1bcQUnA4B0QQcvRJWhxHfUa/eMt/1meMe47reJ3mQN0XxpRFFyKx1IPuqJY0v/x7Mk+wf+wWyYevFLYcQ9xAvz3Abexw7DvgdRuBTxlGALeEO9jwPYfjwY8DdliMU2L4y0FaArGcKv3fKFH5/0ml2l+OqWqKgHmfcI1Poat0F5sbGv9xh4wdb+hOzd9fG3OMgKI7reL7v0eLlGIKxw8Dfc+RiRMlRYrLV3qto161+l+3/0cn2/zj+EGOfu9j2SG3/2xQVd8GKo1t62n1BO2+L8+r77/qPIsU/ZV78H1BLBwi9kSOL+QcAAFszAABQSwECFAAUAAgACADBe+k8vZEji/kHAABbMwAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAADMIAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
+
=Satzfindung=
  
 +
==Induktive Satzfindung==
 +
 +
<ggb_applet width="885" height="512"  version="3.2" ggbBase64="UEsDBBQACAAIAINo9TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VnNcts2ED43T4HhoZeOaf6IFNVKySjuJdOozsRpOtNLByIhCRV/FAC0Jb9ML30DP0LufqYufkiRkq2KjiexqwvJxXKx+327CxAavlpnKbokjNMiH1mu7ViI5HGR0Hw+skoxO4msVy9fDOekmJMpw2hWsAyLkeXbniXlJX354rshXxRXCKdK5SMlVyNrhlNOLMRXjOCELwgRLTku1zSlmG3Op3+RWPDtgDbyJl+VMItgJcjiLHlLefV4qiZcpVT8TC9pQhhKi3hkhQG4DncfCRM0xunI6jla4o0sb2cQRL4cXRSMXhe5kOpb4zOQIMTpNQFEPCkbnqpAh6SMU5pQnMtglB+ghNAVTcRiZEVRACYJnS/A18B1tLW4KFhyseGCZGj9B2EFuBMGEuiNeQp68omDXzBh4Kih5pMyQy4viBBAC0d4TbaAzRlNWg9v+Osi3YpWBc3FGV6JkilOfSO6EBs5AczFpMPjfJ4SI/MA8gWJl9NifaFB8LXpD5uVekU5NJ2fFWnBEJMRQOBzc53qq9KRntZajtJxlIaxIY3W4+7AUxrqOtVXpZXSXLtmInerqCuI8ZpyJAUSRkjFOvgUTwlQa6Eyp+Jt9QApsDShuvqFX8tsCjXQTILapvtYNoenO+kzXBKWk1QnSQ7clkXJ0aVMRj2XciQhMc3gUQ8YSLCk6zdwQEsTMmekclxXkAZMjbYScUc8PK2ckD5w8DUW0AogHiFjkZUqoErkXYKFlCjNLMN5gnKcgeRNLiBOqGJLzkJl5SLsjKz1GCAEA+7I2qhb5UVRikphoh0w1mR5pSQjUHtC5ZlK0xrviVU3mkL1jKo7mPEtczBc51TYUyklL1N9welqgSH4qq5SvIEW0sRJGTyfzTgRaD2yTtwQ6hHaidsYnhTJHeByqa/rF95TN9e6qSodXXeyY6g3fZMUOug9WN+p8O+CdBfH13+6XZCU6ntYtpP7bjBdT5e5upoy746nO1DwuN4hOHEOOa8SEfrmSpqXVbUiJDGLlDCtCK1gQtXYGiWzJcO3ZTPZGFYeTsYZZXFKdtiY6OQ28LcoWR4mBEqNxjXaS6vd5cQCmklOOFetWDSbbtf8b/fcByR/qOE78Q+xdZTrsC6S/BIcLxhHaO0YIjdORU4lWbtV8WxcI7p2G8xBYjC6RuNKf1xpjT1ZrYHth6E/2P5gwDdzjHuV6XHQgIF8yrX7XHdwSLSYzoChzgW63MuEsy6lefagJvc4delrog92uccqS88OI9fpDTwv8Nxe5Ho9NblnR8GgHwVRz/G8gev3vqRkL8hcyncIksWqqvZsj6npYaa4sVdxMX2Mqm2g8+Vle2BROrkDWsW27fnRIHD6/R4MulE/1JCD3HX8ECjyw0HkOb0uhb5TTTSDzXpMRQ14KjOj3jVANu1vepaErORu8zz/wHDO5VeH1mlspu7h/T3e3Mf5ZI9zfJhzBrYqqvAD+T5mZX10vutNiF4Ar03bezYk3renXGoi8f4eSA+MO22EvtWW0tXkBMdx+fA9zKHgx99sP+3r6KMjO1cd/pduqO9eEMb3LQdxt+Ug/h8sB6EdOq1lWXeO57waHCT9rp170o325FnRXi0LfTvSe6tntSioM6r7yhdhT3b0XTpvbw7zqQ5SaiJAW74P/pQGQ9cO+k5/EPpe2B/0okEYPuxDrDoi22cz6MbmUURhFm/bYlAJ07S4ek9mKVkrJPeoIRm4JE8039cngjs6rcVlvWIwufwYMJF/IGsBOy0YGFnffyoL8ZNro4+QC/GCkilBCcnRuzJfCnSGcDmD5wz9wgjlttZWM7TpEWDSatv/ep/Be9hzgZlQn31IllNge6HT+LnmI2YQNpep/8bMa2Hm2WhCOUcZFQqh32m+JGkGr4GPCeZogj//DSPcjHB0e9MBQO+JAWgwCzpi5rcw820AgySELQrI2YQSBFknIN2urwhFF/GCUSEIysiCzXC86ACX/zThcvuD5q/fDbxeC7wegAdpNfv8T5pCylEmi/PV8RD1nhZE0X5JunYbrkHUDa+ghVezIH88HqbgScHkO/swOXbHPAoNLrc36AekkTB4oCMACY8GJC7yhOpjJ9A+N8pfDS29W9IAebu43YNXK/RpAW0J53VkZHeX0ViEv/YJb2jO4z3n4IF8jFeKACW7vRntBnza/PdI/WFq/jF++S9QSwcIZehO1mUGAABjHgAAUEsBAhQAFAAIAAgAg2j1PGXoTtZlBgAAYx4AAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAACfBgAAAAA=" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> --[[Benutzer:Gubbel|Gubbel]] 12:10, 21. Jul. 2010 (UTC)
  
 
==Funktionale Betrachtung==
 
==Funktionale Betrachtung==
<ggb_applet width="1280" height="871"  version="3.2" ggbBase64="UEsDBBQACAAIABJ86TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VrLcts2FF23X4FhZ7KqaZAEQLKxkpGVdOo0fUzktjPddCASllBTpEpCtuTv6Q+02bTddp9v6gVA6m3ZsuypHW9oASAe595z7gXAo5eTYYYuRFnJIm85nosdJPKkSGXebzljdXYQOS9ffHrUF0Vf9EqOzopyyFXLCVzf0eVj+eLTT46qQXGJeGaa/CjFZcs541klHFSNSsHTaiCEWirn44nMJC+n3/V+FYmq5hW2k5N8NIZRVDmGsmSYvpVV8/PQDDjKpHolL2QqSpQVScthFKYO//0oSiUTnrUcgm2J33L8lUooCnTtoCjlVZEr3Xze+RmUIFTJKwGI+Lrs6NAs9EiMk0ymkud6MWYe0AihS5mqgW4b6T6F7A9gshGLbXdJUZRpd1opMUSTn0VZwHw84gaYhhH1/CBm0BJNbU0ANYz6UexT5sVRQAiACDOGqVDs4sU/D6qm19eZscVFVygFxqwQn4g5zP1Spks/TqrjIpsXjQqZqw4fqXFpPCGoi7pqqoeDZZZ6le28n4m6zANDDURy3ismXQtdYLs+nY7MK2ZCvX6nyIoSldooFBrUz559mjZ6prNW2LTBpkXdh+50Vu/Fvmlhnj37NK0ymdup1Sv3mlV7uBlGVkgXQOfagWeLz3hPgEM4aJxL9bb5AY5zPl+qfuHb8bAHzFl0nVmf3n31eXS44nRH56LMRWY9KwfbjotxhS60C9uxzERSkcgh/LQVNSRcm+sHmIAtTUW/FM3ELe8sYKYWL3rvSvHRYTMJPYcK5pooEBBYj9JrOR2AU1YVV1ea6QpY1nK+eeOglCuodXS3l0V5bmThVEwU4r3iAmq68MaZzNNx3gdbikzjZ4YTmRgKIKUyrmQ8cQZp+xfPmWlQYeSkEY66xQIsUL/Rs4wP8mw04FDi1kvP+BTUZREM0+E3RboMEc8BarN+4PhId6CNORIirRVV1QxAI+jS8GlhSgbgCk1Awlztw9OWcxC4ceSgK/u6aWXZp9XGjBzUrmFxuQGh400ILfvlU4HI81xmIaJuzHaDKCmGQ56nKOdDGKojyyQTBhepgw3i2PoS4p6FzKIxVk1lYjusu1nDHIggkxmgibOsQWoAVM+BFJqMs9Ue7u24+O42udXkIJiJ/AKmVpQVQhNcm2uK7YDoqimZAGoHpmjq1UVX3oJ1wPylnKB2077dtGrrYBy6MQ7i+R+Yth3UQ7QJ9Gy50aY68wBu2Ln9ltv5V1ZCwZ8SeSaTNW5MIAupdIbTAKtFBywNFS3n2W/jQj1/9fod6rZPf0avXnfR6Vftt6+7tmKD/ih421nu6v+0o0lXKlHKs3naZQIwgFg18dp6muKl+l7TBGkyETckS0mDYZbnxouWiGO6SLPrCWX6XeFTskai9nYSrUj7DbjO4+4irJ5v8wrzfDTC5UYMEj7PZzikIaEha5SeYsogEaSUxQxDurmHpr0FRq8qmtWz9gY949tNoeVhhjS/o5ztHGX24MEcbOySkASQZBMSgKxEESYGbepiGhM/CoPYJz4lNdjMjeB/H9LtECwQruWP2+RxRYLkEDYmiVTb7XSSK8jxAKA1uhhjcXjoTUsDwILNjnehz/Gd6MOIMYd+9Oxjf4NA2I7DReSt1BwQl9AlQ+3j/V3R1+WbCXC8BmVvO5RV3VsDVu/xB/RFAsQkYoB3BKoTxiG1auOBenlRBPoTRiSiOAoM3kHghjgCE0BDH8OWk9wTAwzemVbFmceDkq5vVs6FGOld4nf5acnzSp8x2DYLm6C9ok5nF9p0Pp6ow1zKQNuYH1DwBBo3ER5HMYEYRIMopiyIyP3TrlPHnTVTpLvRLn1KtCMujanng5bFgDWjjciFmoME2OX5sRdY0h34OhoR4JtHPBwDIcOnw7qtNl+XWrGbzcVTsjl1IYKFLITswYN9i8/qTAOMGkU+xUFAtVNYmxPfBd8IIP4FmIQUPyGhNUd9KwY/bkhu8pXOmt0//LHd8OY8amYxaK3fh/mMG7AhaWaQLHvYi0I/IM3Gb2era/yvOchgtzT8tqyQrZiKl8lcPqOmMMuKy3fiLBMTg+WKcXZDvs5qOhb5dcZ9+HMn5P9cRd5zqRYtFvgM8rYoZuyOyDeHvNoCPfuYQd+c9+6FPb0H7IFcQ5iT3jW/mx1r72WfmRQa+6xHwQ/vd7LP+3VmhJhgiCc+iX3Ip5u7hjvqoYfXFTG6B+OEW41DH8Q421K7Lz+ac9DQbU4QPHfpEMcc49zXyfHJo8br9mhRoMumky58f1C9ecyXELdHiriev46UDsT77BHeFYqrVY08sRoJwceI5Js1kTx5xkdF9XyXvVvzyt3c9kGOPuxdzlSf55C9Nlqb4kyN4RsL4QJgy9Hmr52izV83ZQPhQyQDD50LsK25wHxTv08qsNnPa6tYb39/g7ff2ecfn+f7bhxjGoSYRYFPA0Kb+4UwYHHA/AD7sO1leynLRlIsAr5MjesI8vdOBPn7xnTsrunylo3KR0+QJZr8cSua7EmWx0gZuuFKDtzLW7qSix+IMjcR5zr6/LMTff55sH3+9buZJ8qezVfX/tLV9Zfj/Fwnfhx6Ohaq5MlAjfP+F88+8/Dzn6TQn/f9+3ueilKhSiYDpL+ZKwsl0E8yPxfZ58i0vBR5jjoIxs3AXtCoQl+XQlbwvOTm7Ze3vxH3n+aN+DX8O8AuW74TD6+7Ez9c/B7KfDhYfzn54j9QSwcI6DC0qusHAABrKQAAUEsBAhQAFAAIAAgAEnzpPOgwtKrrBwAAaykAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAAAlCAAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
  
  
==Beweisführung==
+
===Variante 1===
<ggb_applet width="1280" height="855"  version="3.2" ggbBase64="UEsDBBQACAAIAHp86TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VtLc9u2Fl7f/gqMFl10JjJAgK+5VjqSnTjpxDedOG1n7iZDUZCEa4pUScqW9avaJul71e77m+4BQMqkqIcpy4mcsTc0ARA4ON/5zgOkDr+cjgJ0weNERGGrQZq4gXjoRz0RDlqNSdp/5DS+fPzZ4YBHA96NPdSP4pGXthq0aTRk+0Q8/uxfh8kwukReoIZ8K/hlq9H3goQ3UDKOuddLhpynpXZvMhWB8OKrl93/cT9Nrjv0JM/D8QRWSeMJtPmj3guR5LcHasFxINJjcSF6PEZB5Lcalgmiw3/f8jgVvhe0GgzrFqPVMBY6oYnK3mEUi1kUpnL49eR9aEEoETMOGnFk2+GB2ughn/iB6AkvlJtRcsAghC5FLx3CWMORc3IxGIKwjkn1dH4Uxb2zqyTlIzT9L48jEM20pKav9B21TXmXgGCwoolVV/FOTcMvzniaAi4J8qb8WmODWPRKN8+TThRcN40jEaZH3jidxApUmjWdpVdyAVgrlgK3w0HAszYDdD7k/nk3mp5pLVA99eursXpECdQdHEVBFKNY6teEAdm1q69qjJR0PgqrMViNyOaQk877iWuoEera1Vc1KhChFi3bOcl3TXC+jEiQbJBqBFucbz7wuhywbaBJKNIX+Q3YwHm2VaIf+M9k1AUSFK1gPifZ1ZyHBwv2c3jO45AH2khCwHYSTRJ0Ia1Rr6UE6XFfjOBWd2Qq8SRc34AAurXHBzHPBdcU0gpTvbhoiAvNhwe5EFKGBGT1U/AFsJ9U7kVSNQWatBqnXzVQz0tlm5zsMorPFa9f82mKvG50AT0dfslF0v/7z2E8CQcAIg+k4r4TMZpx4Q9DHqIw8oeoJzg6S2OwMY5OO60YcRE20bHXm8TQy8MU2DKEwTOYD8FO4dkETDI8D8SAo+OYC/XoCPbfg2HyAfA0coS87XiJSC5FeM4DmLX9TX8A4vSQ9BXfqdZkMhpxJEb5TIjHoDN4MgG5ZpPEg+4QEQf/9QNIBY8N4r//DDnKZxnLWbK5rsfPJ4mkXK58WGmYBxy6U5Qq9ijyza3otDH3n5FyhbnTy/qv7RG6lzJJcc4LxkMPWnJnEXhXIGYRfDXfadQrm4QXgmkpvEHhYzmBNN4x570sGKQZ49EYplT+o2CZyqASNG01HsHKQNorJQL8M9OPq1Ha20hHqVamGRW0Ujaop/1pqIc1XWdL7fjRaOSB2YXeCFY6ErEfcKUUIUMk8rC0IeQRqSutiEmad/h6smyKiqqB78Kfq9JvlF1tOgSPFvIkUfEgLXr+1XgUdr8KELw9HDcSDsIvDy9AtChOEJriDKkrrBdEs7xlSrTdQh/JmmakgAwgH4spaufj2/moNqQPjwzA1JWBqk2zidssx7dt5ozQEn0faqkTHR/AgHzRF/56qF/AZheAbmugTytAe+uBlnqbQ+RtiXM5+m0m3i1wviaOhge0qTKkmWZgDVtY0LwYQd7oi3S95p+HKcRt2PSC+n2tfg8uMqfMd1XA4Wg9DmXfdrSVb7OY0rG8dPXl9lqW2t3We5dVd8YHsn1BcUerHFR3vb6SbLZcI93Vpmvv0kXdKmZUjZfgzHjBJ1Qy2jV7WGe9So2BDDlza4UwVU0ezzkfy6z9Zfg69sJElm96TCEpXRGJS16jt//RYVfBGhamzMWW6ZiYuo5jmW7OjWr7LPNNd+2TvlauY9EfLfKpU8f/dLbyP8TQpZ667kt+hZumgQ3XdDF1mIFdSwEmIzS2DYMSkzLbcG7l2b6OgqtBFC73bB0dEqoODuq8AOoLkkWON0QP9NU/kDh035BNkOllc1DmE94dHfNi3iQKYHmZ40vq4LvatSw6dqmYj7Oh7WMmWJddtC6qbM5smmzBEqWLMMBHWNShxGWEGJhA+248xgeIA4tg+fcPrOVYsSYzoZ0BSsS0XcwyrFjTYZS6xCAGNQ2L3l+ouvcPqnnGP8+a1idNHx2BcphQx6g1g8Q/P66PAeqsbw4GjJbPgzyTTIekaYJ1uxY1LNtljmtZG8u3tZkYwdVczLwhnnXyWy/2r8OvlTcGQXT5ivcDPlW6LCse8B2BRPLY/dX81HoBv7rVSWdVVc3rVSf8flUny30ilCjLAhhEfoINA1OLQRSzHdu097mQuQns2anZUQX2fj3Y+/cL9iUnKthd+PtEoK162kE9aAf7X/RWgTWvDxt2dVT2keLmnKEqbnaqcfOnWnHzp8W4iZs2JYZlOBA2LVt6t1smQsuIuovAuYjVBw+cm7OaavT8520tdN4+oLNLdE435ZzvaqHzroqOQ12TUmY6jmFbtrUtOgQbpU8HSlXELuAx9xGeTh6hVpHnfS143j/AUwOedYeix9VD0RqV0x69ciZUJvKFP5KV1U1Sapbtu3pb/2TDifK90R1pUmeuLuc2x8avotRLF9l/rNkPGYmi/5MK/Y8/98ZR8u/1PmDBcLNHtjPfu3irSIymaxHMqEstIo/nWfYaxXANg1GDYBebzHJvpd9lzjVT7xOt3YIuyy7251ou9ueN+Yn54GJrkSDDRVPh7QYqbE2I/aOFPK6jFgODIS61MbYzWrg2sWzGsM0sbFsG2zktigovk2MVRX6pRZFfNlKEPVBkC4qUiPLuRkS5JV32jjRu08W2bVq242KXmZRknGG4GGBozVzmxpzZxJxV/Pm1Fn9+3ZjFb8ufuy6B7wF9SiR6v4pET+tQ5uleEQTca+HPyNPXcjO+q6iykidPq6z4rRYrftvICuOBFTepzk4+mdIWrFrXEo9o0ynbN91dNfvsE6lm3SbOill2F8XsSbmYfVbh+0n9ZORk7xIQArkGsyljlsNcSN5Z9rrUaEIFa9rYgjZIUIya9rfZv2bqfaa1e7Iq0/i9lk/9fWOmvuwTgodMfTUJipGPmU381w/oC5Qn6ys5sTUz9o4fbpMQA+IxZS41LGLRPP9wXcyAFo5lmSYzpVXsmB9FzZdZsoorf9Tiyh9VrlgmVBwOppZlU3AGH/7F1Mt+P+Gp+gwxq4TuH4+W/L4le6XovyEV0IbrMSt9qz7cyS9cPtR7+zrfJspPEwufke7qu7htfoTkLQFJ1ABJ3CuQan3tCyhZd/EBaRGmg+KPdeV9/gv9x/8HUEsHCFpZLGYbCQAA0z8AAFBLAQIUABQACAAIAHp86TxaWSxmGwkAANM/AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAVQkAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
+
<ggb_applet width="1005" height="544"  version="3.2" ggbBase64="UEsDBBQACAAIAAO77zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vvdbts4Fr7eeQrCCxQt0KgiRf21SQs7SbvFtttF050Ce7OQZVpWI0seiUqcvMzczAs0nZkXyH2eaQ9JyZYsx7Vst00mF5FFUeTh953vHOpY3n8xHUfojKVZmMQHHazpHcRiPxmEcXDQyflwz+m8eP7TfsCSgPVTDw2TdOzxg46hkY5oz8PnP/1tPxsl58iLZJefQ3Z+0Bl6UcY6KJukzBtkI8Z4rd3Lp2EUeunFu/4n5vNsfkEN8jqe5DALT3No88eDN2FWnj6RE06ikB+FZ+GApShK/IOOZYLp8OlnlvLQ96KDDtVVCznokIWL0GSIq6MkDS+TmIvu88GH0IJQFl4yQISItv0ncqH7LPejcBB6sViMtAM6IXQeDvgI+uq6CWOyMBiBsSYlajg/SdLByUXG2RhN/8vSBOzBpkD6Qp0ZlIqzDAyDGU1dXqqeyWHY2QnjHHjJkDdlc8SCNBzUTl5nvSSaN02SMOaH3oTnqSTVKJpO+IWYAOZKhcHdOIhY0UYA8xHzT/vJ9EShYKihP1xM5C3SoH5wmERJilKBLyw8KI59dZR9hKWzXrrso8sexRhi0Nl17BLZQx776ih7RWGsTCtWjstVY72cJsyQaBAwgi/OFh95fQbcdlAeh/xNeQI+cFosFasb/pWP+yCCqhfMxsS7GnP/yYL/7J+yNGaRcpIYuM2TPENnwhvVXNKQAfPDMZyqC+WKBV3/AQNU64AFKSsNVxJSgFXvUY640Lz/pDRC2JCBrT6HWADr4WItL/P4VJyDM6Ie46nnj3geB0jors9AfjHyYjiB48cwPmWR0DYHXQlMBh6HIUScYBEbM1AVlw4k/W8G5NvOLIQkMhqUui+uzymBy0udSbqdF01GHrSUeom8C7Cxun453ttkwBaQBHTlkkGhEzGA4G/C2KCIh7xwejSBIaWEKuRITDM0Pejs6ZpBQbjiLvHhUt0ueynBiVghZzYKb1CgfAWe3v9wE6C6K94ThLDmOHr1D0u49rBmknZ4+cl4DG6HYm8MEx+GqR8xCVIo8gbydOFVyMMKPYVMzstLvhquGKQBP8gg9GfY+p16BOIjEHrMskyGSV4NiLe7cAWO2xjSN+dnLeMgK7H4DExL0gyhqV5Qd6GrCdFl2TLF0pfFNVw0XeIKN+AKaThF3bJ/t+zVJYJLrGHXqtAMftc1ijm6VHwQ4uiaknf4qIz7JVYLyFQEBefyw2Hor+b931Inddr9Btvd1WzXxdbdIhaZeHupDcMpG6iW+VSVGGNorqVT1ya6QYnhWGQWcGrCMreR0xtwpwVUu0pMbxvgeqvBFZ45w87bUEltY90WSpojTTVKdccluuuYum4R63gPWxJsQ7PIAgWA9R7VHBNTyyImMR3btc022lxw/3AM21s/5Kt5eh1z2F4ARA0JSLI8OIitb4lBhbVeG0n07rYk4EHEWaoIw63+tUzImwSawzaoHv5gVHeX03UHW5aNiWtg13YstQWimmW5lkt1y9INh1Jrq4h0wgLRvsDAofLzboOI/moismK0Eur+3c/wVXc3SBVY01F7KHiepARb1DCITQ2LOgpvV3OpYVNKKLFsB+jZUVSSeEfCL2ZRCHyp+exyythEPDS+iz+kXpyJ6kFdym1J791G+qAd6YP7RDrslDDWCTF0QiHBYNMyIR2ZinlbI1SHAAcu4VDbJirSuZqtgySJqZvYNt1dZaMfxnsh9l6Dd9aOd3afeF8Uuy0ZJ7DDdhxD122KdarbltqAYENzoK8DesfYNS18jziXxafbwrvcxjSJv/m8mnlZIZlRBr3F/WBPXqBtapbrmia1MCaOS037a6wvT8ll6atJu2GuyTteQZSxQJSX+vO06ZaNUZScv2fDiE0lkg1q2BhsErXK97NS30KfjbjpKW6awfjmqhU3V4vc6Jrr2NgyLUN3dWpbtrEZOUqRWG+SQ+8pN6v2lEd3uU609o6SarOy0C7LaMd/LXCIZjjbbKnfJ9zji7I+UrLee3jz+ZGS9nFD2kcPvEmSPWvzrFPeshEB4oEiUIe+Ouzi4R4iii6ivyiWOKY7q0Nigk14iITHd/HMv9VDy7K4WSIhYT5WEB81o+cXVbRcO35+KUrEtQhqOgaET8s1HVeHpzO8fgT1k3gQKleF3u+Kzqdtct+64bXxBc+64dX8HqlvuUiqHIJUrr4mlY0Fc9dkY2qYzqNPreBofCOlLNPLHM+6an5vpZnfv7rncL6BYrbfkNxtxSypHR+V7C0SNlzNV612PLxPtWOQQb34qGo06msWWSomVq3Djh7UWtFyrGhpxKgaRUELioL7RNHt5X0gT+06iUZtE89Jsuk3p2lZnXnYIOVlm1TycrP0gYnK7PJ4x7a++pZb32UoBw2UX7VB+dVfBmVLw2R5jse7r+C/vC01jNoV9Ua7KOptnM13GJaI/Nq9kiocbVW+v2NVvOUkF4nmVYPksB3J4Y4rtz+OZUdzHGw7FLs2yIqYZJZ8gH+y5It8qjm6bVZS0V32CTadpGCJALYA/QObcogecOGg8+CXPOHPxtd/BpGGuvkwgC4xBKwoyuPg6YO/Y/2Z/Ndj5yxg6BB5+RAN2Bj9M2VhpslrH70MTTyYgqUcjUOObj6jHLzwvNoOu9bQH10yoDhQna5eqMmlwXVf42Bhp27u5uXGrT0l417KZZZCKvHpagNpapTcGpG/TgGpUfCRxTHA2xc4c3QepoPH4j3g69/E23ygCQCvxPXmSkMS+OOYnzPx5h9cEHegIL3+8/pXaFDdVOMpIB+z9DFKRNd8HLBTNkq5Nic3YLGXs/SpGAey1pijcIwyFoEroLfe9a/oMn8MYzExpNdXPcQMlbHWZpKszeTygPDpe9FsaWZD+/J1E2q149mo8XwEMJ7k4zEDJWXytc1XijR0BrcVDDearxThYSaoGcNVJScNPRzAeEdeWkoWbufAWsr8Ec/AmzJ+/RsojiPol2mP5CjdKEvQOM8yMAG8SoxQm+yLeJMUfPFUvH/qARwZOJByl4ev45jF5/LN0kyuYtGkZ6jHxOwxGAOGCKX/I4yGTN4u1tUYgaUBE55WtWPAsuL91UwZ82h9DzO29LBvl3IaHmbRhfihXpWpuV29ltOuavOyVqlppvybP1rVaP5YrNFQzcbEcBzXEd+HWo57Bzd1GxdoRFXo21doltFWvN53eOtXrV/alaMXacOaaeu2axnEsl3quFaL0tqarz/hdspYa+tUY8f4Ht/n9ZMkYl48g+HTIpKVeb7P5uTdcJgxLrchZYHENFch63sTqTLZ1mNJv/jFAIuftlv76Z1ae/HqhWWsvfYTfxRBzhsmUcBSsbldXP6T6u8t5G+Mih9ZPf8/UEsHCFrfzszPCQAAljUAAFBLAQIUABQACAAIAAO77zxa387MzwkAAJY1AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAACQoAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />--[[Benutzer:&quot;chris&quot;07|&quot;chris&quot;07]] 21:47, 15. Jul. 2010 (UTC)
  
=induktive Satzfindung=
 
<ggb_applet width="1280" height="636"  version="3.2" ggbBase64="UEsDBBQACAAIAE+S7TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1Vnbcts2EH1uvgLDzuShM6Z5vzRSMor64mlSZ2I3nelLByQhCTVFKARoS/6qzuQP+gH5pi4AUrzIVnxRW9sPprBYArvn7C4uHL1ZL3N0SUpOWTE2bNMyEClSltFiPjYqMTuKjDevX4zmhM1JUmI0Y+USi7Hhmo4h5RV9/eK7EV+wK4RzpfKJkquxMcM5Jwbiq5LgjC8IET05rtY0p7jcnCZ/klTwtkMPclKsKphFlBXI0mX2jvKmeawmXOVU/EQvaUZKlLN0bAQ+mA6/PpFS0BTnY8OztMQZG86gE0Su7F2wkl6zQkj1dvAZSBDi9JoAIo6UjY6VoyNSpTnNKC6kM8oOUELoimZiIXUjOSah8wUYG7ieHi5lrMzONlyQJVr/Tko2NvxAAr3RDScOZYuDXTChb6mubkuNQi7PiBBAC0d4TVrA5iXNeo0T/pblrWjFaCGmeCWqUnHq1qIzsZETwFyltHdSzHNSyxyAfEHSi4StzzQIrh76fLNSryiDkvmU5axEpYTXB4X6mein0pGWbrUspWMpjXoMOei2344dpaGeiX4qrZwW2rTac7vx2raaaShHUiBhhFDcOp/jhAC1BqoKKt41DQiBi9pVW7/wS7VMIAe6QbAd0z7UmKPjQfiMLkhZkFzHSAHcVqzi6FIGo55LGZKRlC6hqTtqSLCk61cwQEszMi9JY7jOIA2Y6rW6cTgQj44bI6QNHGxNBZQC8EdIX06KrLoQ9JKgMyyuZxSaxfxH1UAZ4eh8AWHKZT4LyCUJRIYFvCdrA8nJkkAmCRU1Kui26L03tmWDqQrQ5Hrd3/IA3TdGkIo1nK8WGCRNkuR4A/Wg67Qa7z3L+lDgAiBVfkJWruQAkrQVIVldA0Ud6WgFQ6q86TCigORoDUaYngfJKn848ONav62UdJLJ8qAmdusI0Jh8A523/y86M7ommZa0M7VOH1mmv/XauZ/XKVsucZGhAi/B6ykt05woZ6ks+AhbMjQQtiUG2sFKNB2pHqweYgdCCF+abiFKjX7lEAtI0IJwrsqb6Bay23HucH4b0NbDYb6TcbCYkOISTGMlR2ht1fG5sfSE6LqRrG3FjOyza9G13WEG4r2kazRp9CeN1kSuj6YVW27c/oHYrWeYeDCwDvSJr3469cJGPhfafq4LHyRQSmc03U/6O3B7QPlbTfn7Hcrxfsolgluy8AMZ75f1f5fyXhJZjtX7s6M6qeJIJdVRYAZO4N0nWAaE0CVsk1Iq9hNyUghYpwCLASupZgXvsDL9w9Zdk/309IuafOtB6QYQSPDlI9GPg8D/4Bq2z8nJk67cvuk5jdPBYwr3GZlL+SBgJrdV7mR/nPB6tAak5OnX7hZTeLVbOOPYjxXER74Z1xjDWcl3ogPlsQI2l3uSbd7CPmZ323hByEru10+L8xIXXJ7b+oFxO7sfVEgPi8FOFbhX8j8oLxzLOwxdh9rveaYbu6ET+a4VObEf6hLimV5sOWEQ2LZnwanFPnxqTW9Lrex+qZU9p9SCKhV2cbUCnVmeGbsDFiTejmmHUeQEoRX5cRTE7vPJuL2kT3ZIJ/cjnTwz0t1BMm1UMjmBE9peENuh5Tm+Lq1HNuSeFXqhE/qe7bh+6D8f0tWVy807Ycm8cxPzX7/sp17dC2w5A235PthT1XDbph9aYRy4kCaxF8VB9C3e71uZ/fsRfyNR/oAoXKZt/fQbYZ6zq49klpO1QnKHGrIEk+QF3cftBddAp7erW69KmFyuEbXn52QtIPqgY2y8/Fwx8eoTBEK6oCQhKCMF+lAVFwJNEa5m0F6in0tCuYlefm9br9S/3zBHCWEJTheCcIGy6o0eSE3eZ07AbEZ/6sduJR+Rj1zgUqh9ANIbx6h3WHHrdS/wegeY7rp31x3z9CVeMf5q19n+ueyZbBAisz7F2XB2O+CF0GNAenK3ZpHZnELCqHcCftRl0kcmsNippzVwqqrCbsK0fvj7L11cm8AblthJK7/r7nbyJOhpAY5N12uisH/H4D4G4ZsWrEkX4Om24bTQ7y5hdwF4uJB1EN6znIV3X81SVmRUBzNonzaEHW6pO53NOBHq1ODrfavj3EjfzleOzkro7lsJm83ON1bC24tMwlhOcNHu8Yb4dtL3v1mIWtDcSBcJG87T+4K+/lCF1NVHj2C8UvQq7a9f0HiIxXH3g4f6xld/5Hz9D1BLBwh26rWuZwYAABYdAABQSwECFAAUAAgACABPku08duq1rmcGAAAWHQAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAKEGAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
  
=Sehnen verschieben=
+
===Variante 2===
<ggb_applet width="1280" height="871"  version="3.2" ggbBase64="UEsDBBQACAAIABh86TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VnNcts2ED43T4HhoaeaBv/JqZSM7FwykyadyE1meulAJCShpkgFBG1Jz9MXaPIIveeZugBIihQVOVLsNm51obgAF4v99ttdkINnq0WKbigvWJ4NDcvEBqJZnCcsmw2NUkzPQuPZ0yeDGc1ndMIJmuZ8QcTQcEzbkPKSPX3y3aCY57eIpGrKW0Zvh8aUpAU1ULHklCTFnFLRkZNyxVJG+Pr15Hcai2I7oJW8yJYlrCJ4CbJ4kbxkRX17rhZcpkw8ZzcsoRyleTw0fA9Mh39vKRcsJunQcLGW2GBt4HUGpUiOznPONnkm5PSt8ilIECrYhoJHbCkbnKuNDmgZpyxhJJObUXbAJIRuWSLmcm4odVI2m4OxoR9pdXGe82S8LgRdoNWvlOdDw7Y86em1vnP0XQGGwYoeVkPtO6WG3oypEIBLgciKbj024yzp3LwoLvJ0K1rmLBOXZClKrkB1KtFYrOUCsBaXBo+yWUormQU+n9P4epKvxtoLjlZ9tV6qR5RBk9llnuYccdiPB/6dVdeJvqo50tJmFlZzsJpR6ZBKm3ErstUMdZ3oq5qVskybVu3cqndt4XoZViApkG6EWGw2n5IJBWwNVGZMvKxvIAaut1uVD7wqFxMgQTsKGp3WfekcnO/Ez+Ca8oymOkgywLbMywLdyGjUaylDEhqzBdzqgcolRML1CxigpQmdcVobrimkHaZGcTsQd8SD89oIaUMBtsYCcgHsR8i9XM0hDIuCiI0krQDCyM0mRMCYTAA0pQsKdBEqMlRgNR4a/WYZTXbIFdFrSlczWruE8b2BokKKpMs5AUnNhZSsgfftvSmFP+VJd8ckA8+p7QD7llKBxGZJaVLlOlEFNFqCSkWPlknKXwVaQXIxHRc4OTTOLNOD4Nzox9UsTSaZB9TKToW09ssdHrq8wz/baPzG3YND5R7XxO5x3onzxYJkCcrIAla6ZDxOqXIKkxUAEazDCBFLeku7ohT1UKzVVUp6zoaAZnHjzNjo5hIxB8pmENySVM1Wz786YvHpgHyRcVBfaHYDpuW8QGiFK6zWWC+INrVkBT4709XEqkQbq4UNYM/ZCo3q+aN61gjqoyUj3Q2i7Q/kTrXEyAXNmhQjTz7kVWmJvs+0/YVOhRBMMZuy+DDsPytSdFGPe2CPDoO9k3tOYpZl6zqmrkey6/V0WlAh6XBmazY4/wT3sBkETmS7Vuhgz7GicJuorKj9+ypivoTA3KWlJuVqBHWyhxU5jJWM8wYKciIvu+X4YYnZ9jdWDtZ0UrG/6+cjqLxDF7aAvjZm4jAYLzIBfQX4oEcZhQjpofG8zqAXx1Do+anl23eV0+Vloi/34faHCfNDDrg4KYc8xO4hGUfYx4EXWn7k+iG2HoLkYzqT8v08v+hF1eRwMBWVttpbk2+//O5huWVaDpzWLN9xwsjxsaMd7JuRjcMAu6HjWaHth/dEeuXgVKb7huRQIvpngmtKl/Iw9jq74iQr5Klcz2mdNT6D8huy3kH4UiM86iGcHEaYg6YamORRJXHP9HzNIM90OsTSzf2ZZZuOH9qe40eR57iR9V8AuE9h+uUA08cJsGcCO7uJU+LrBdC82pbrOxi7vgcTHg++6k3N/iQtgbb3Af3pz8NIq9cJDUowWz4P9pSVg6HQBDiIfMf2g8gNozrhHVsc6xdFGmrPamHdQHAX2L2XQi2ooh2oCI+35S+shWma376h05SulC+7jgd8F2CSfLP3pnkxtoNfp4NYLTmsLTv5autXdCVgZzAwNL5/X+bixzERG5TQAunXKVqoFHVhEPCk0VXzb9bDQhAu1OEMqS7ENn2n025Uh/6g03ac2GD0T/fT4xqM6WNqMM5aGWpfBXrMBWg/zJ8tQrPjYJ49Jpj/b3Xoom4lVR3qU/rTh6Pq0IfdOoTNENpu33adIPDAbUFwItKy9Mz0pfee545KtH3R4wbVMczdGw2HCpX8ovK1leo4aBr+KWj6zf6nj0dB87EPDeCC4ZgURtiFoA7vbBEOQ1N/S7r/JuG+fb+/A7A7HcA7RuVn1r/+yBLKBSpYPEfy2yXPBUXvWHZN0x/QLc0yBM5HCcweC07ja4pGF+0Hk5LDk/KDbTxndEKzZ1/eTNjfUjMRmkHVPci3pfu7h/P2Fyn1Fbb6DP30b1BLBwg94DHtTAYAALgeAABQSwECFAAUAAgACAAYfOk8PeAx7UwGAAC4HgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAIYGAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
+
--[[Benutzer:Mirasol|Mirasol]] 13:52, 9. Jul. 2010 (UTC)
+
Bewege den Punkt A, um die Sehne zu verschieben!
+
  
 +
<ggb_applet width="884" height="510"  version="3.2" ggbBase64="UEsDBBQACAAIAIi17jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VnLcts2FF03X4FRZzrtTEyDb7KR4pHtpJNp0mTiNJnppgORVxJqilRA0Jb8M930B7rJqjvv+029AEi9rVh+tHHlBc2L173nnHsBSO2DySgjZyBKXuSdlm3RFoE8KVKeDzqtSvb3otbB00ftARQD6AlG+oUYMdlpuZbTUvaKP330VbscFueEZbrLew7nnVafZSW0SDkWwNJyCCCX7Kya8IwzMX3d+w0SWc4bzCQv8nGFq0hRoS0ZpS952bzuqwX7RS4JKfkFoNOOsrX3tS9tqJKMp5zlaj3tG3Yi5JyncthpRZHXIkPggyFO59PIzJYUhUhPpqWEEZn8AqLotGINxdS8OLGn3sqEZaCG6abFNz0LnJ2AlAhcSdgE5iENBE+XXl6Uh0U2N40LnssjNpaV0Ki7telETtUCuJZQ/nbzQQa1zUFQhpCc9orJicHANVO/m471EO1Qb3BUZIUgAgf4Pnaonz3z1H2Up7NeVPehukc9h5p01m7Hju6hnz3z1L0ynhvX6sjtJmqbNsvwkiiDghHFMgs+Yz3IOq0WqXIuXzYvkiendai2GfBTNeqhShc1MJvTvqs52/sr6mmfgsghMxrJkduqqEpyxrJmLe1ICgkf4atpaCJWdP2MDhhrCgMBjeNG4wawxTFGhyvm9n7jhPKhRF8TicmK8UgVywmTF32ep1U+IM+r/FS1oTDJIUjBkqFUdqYSTg4LoXBImcRhKnkhgxFgHkktGq25GXivWrO8LnSKNslYt89pwOaNAtJSY9l4yNDS5EjGpiCWYtbzvSpSWEEPEdVhYlKO1QSKszFAWhcpWQudjHFKnTYLhGgcSzJRfcMIcxW9sShq9sKM1p1MjqnioBd2awEYTD6DzuGv9jo+y+pbcOdeEOrzCaTGMudiHrhv0Vngu8WdFKMRy1OSsxHGfcRFkoEOlquaTBhV4iDMNiiYACvZNCXG1t6vp1kDEjXMkxlKSQ3kvIDIIeZpDmWpq5xcrGdXq/EaYNObQ30t53BPgfwMXStESciE1jqdUrMguWgsE0Ruz2whdm26sBf4Qd0LPiHdpn+36dV1cKBrBZ7tx/MPSqjr1mt0PexhJN/18V8teuPdx9xEUJoKiKmU8D4SsZX8N1r0y9wnG0jvbqd8OXe6N6ostmM2MP38UqoLYu1FNI5o5IaeHYSxH+ucsy3fdgM38JEpJ6ZBvGPpuRkLx7uwcHzD+vVF8qAkTxc/jqYB6XHQHuCf71OPRkFwGx5eYhnYXAiP17hgnyuDqqbMsGY3roI77zm3KINzvF3Lpau46q3GcajnBdSLHZ+6tvtszzaI7/lWhBlCwygMwzh0Qn+XyrpSu/honPGEy+1sveJCFGKFr67hi23InsNdsufwv69hS1u9t1iEws01KLyN9k9goOyb4TxcPwVsB7OsZ5udAu7iDLAZ8+bic4fq3/MsD0UfOwi6j2ngBEbnCHpg+Y4dB8iCF7muH7tG/TGq347C2PWQjoi64R2pX2OeqcL4Ipd4kwF9M1i/oJwCjNXN8HX+TrC8VHf45ZPj1cTPJt6wAV2ZS89M0/NdUurZDTekwNP8qkfPPG7P8H3tJ9vif/5lxR/Gix9zlfAt11kK/9841RztIqKjW9xaberctkZ85k7mWFiKaeh7kedj6QipX8Pq2JEfubhj2qEb3wrVt2y6gumRycXuGrDpdmAFztTAlj6w00mIJxBVan3H86LYNsnrWTR0qR+4eEixfTeo90PbCnyHRrYfunaImR48nNp8JdnrGzJcn2x40GRTrz6K6hff9Z3IjhynPoY6juXixmwHse/iecnzo4fDtv7+d4Xv1PANa3z//ed2wvW3kzOysLcaj45UNc54sVWHmJDGTuDZjtMAddPSus64d03G175hXmDIW2GIiWReKYPGmGXF+VvoZzDREK5wcsMz79Ea5L3dzry9+zvz3nmS7W0uqZsr6t5DLqmbOb+yrLLdOGcPiPP/c2GFyVigJ+qLpxrUdzCRKGps6LS++VgV8sno8tMgs0i36g+wS15KyLIqH3z/zdc2ffIePUmGHHpAUg7kBLgEkjwmPE9hRNKKpJCTN+rXGNIlrOoTZf5RAC9JD85hUEpLz/MBB5+BGF7+kUlS8mRIUlyMY3dBBuLyrxzIB56fQnZgurM8J0MmCTardX8Ql58ufwcS0wOiO3x7XAmc5ByyZDjzYFSV5aKbZADY+BiXGnG5vhQBnpO3kAwR7sbES3nwncFFY7ksc4ngtZaR3C7h+z0clJIJqa8XpP6S1vWWbnN+c5uL3KVbjrd48l7Uy/7iD2/6p+b65/Cn/wBQSwcIfLrPecUGAABAHwAAUEsBAhQAFAAIAAgAiLXuPHy6z3nFBgAAQB8AAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAAD/BgAAAAA=" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
--[[Benutzer:&quot;chris&quot;07|&quot;chris&quot;07]] 21:12, 14. Jul. 2010 (UTC)
  
=Variante b=
 
<ggb_applet width="884" height="510"  version="3.2" ggbBase64="UEsDBBQACAAIAPOy7jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VnNcuM2Ej4nT4HSVqWyVTFNgP+JNC7Zntma2pkkNZ5MqvaSgsiWhDVFKiBoy36ZveQFcskpN9/zTGkApP6tsSxPMrPygWYDBBrf1/2hQXZPZpOcXIGsRFn0OtRxOwSKtMxEMep1ajU8ijsnzz7vjqAcwUByMizlhKtex3NYR9tr8ezzz7rVuLwmPDdd3gm47nWGPK+gQ6qpBJ5VYwC1Yuf1TOSCy5vvBv+FVFWLBjvIy2Ja4yxK1mhLJ9krUbW3x2bCaS7UubgSGUiSl2mvEwboOv73DqQSKc97Hd+1FtbrsLVGNHm6dVxKcVsWSndfDD5ECyGVuAVEhGlb99gstAt1motM8EIvxviBnQi5Fpka9zpx7OOQIEZj9DVwYztaWpYyu7ipFEzI7D8gy14nMTjf2BuW+PquQrdAP2aalu/MKHB1AUohKxXhM1jgNZIiW7l5WZ2W+cI0LUWhzvhU1dJQ6jWmC3WjJ8C5pPa3X4xyaGwMER9DejkoZxcWA88O/fZmah4xDg1GZ2VeSiI1ugF2aK4DezV9tKfzXq7p45oezRh60Hk7TZjpYa4DezW9clFY15qV03bV1G2nERXRBg0jRuJ88TkfADLbIXUh1Kv2BiPgslkqtQ98W08GmALLMTAfkz7VmN3jtejpXoIsILcxUiC3dVlX5ErHop3LOJJBKiZ4axto452m6wd0wFozGEloHbcJZAEzre5yHK6Zu8etE9qHCn1NFSoBrkfptVxwdTsURVYXI/KiLi51GwYmOQUleTpW2s51NivMJI1DxhU+ppUBcpgA5pEyQWNibg7e685cNEqT/22mN+0LGrB5awCZUOP5dMzR0uZIzm9QDZbXbMZ7XWarSPACETXLxKSc6gE0Z1OArFFA1QQ6meKQJm2WCDE4VmSm+0Yx5ip647gYs7f2adPJ5pgWBzOx1wSAxeQ96Jz+RDfxWY2+JXc+CEJDMYPMWhZcLBYeOO584futOy0nE15kpOATXPeZkGkOZrFCCz7hrg4OwqlFwS6wVm1Tam3d42aYDSAxhkU6RyltgFwIiBpjnhZQVUbl1LKe3R+NDwDbfTzUD3IO9xQortC1UlaEzNwmTm9cOyG5bS0zRO7IbiG0Md3SJX4w7qWYkX7bv9/26uOWeOQ5oU+DZPHDEOp7zRx9H3vYkO8H+K8Jeuvdz4VdQWUVEFMpFUMkYif535ugX+U+3UJ6fzflq7nTf5SyUGY3MHP9WNQFsfZjn9Io8uKIJUnYZFzgBpFHYzf0gjhkfnRIAj6Ug/N9ODh/pHp9lCzogHeXf8zQgOQwtIf4FwSu78ZheAgPr1AEtsvg+QYX/H0iqBVljjV/tAbuveMcIIILvD0HC/M1XE3YM+b6fuj6CdbyHvWeH1GL+FHgxJFP3SiOoiiJWBTso6tryiUmeK5IhdrN1mshZSnX+OpbvviW7DndJ3tO/34FW9no/WUJols1KDgk9C9gpO3b0TzdLAF2Y1k1o81LgKcoALZD3p56njD4j3zHx5hPmJvEAWYBC22YI+ahE7CYeYEfRT7u0Iza4KehgxS4ro57Frm0PXQeHP0G9FwL48tC4TkGzLlg83hyCTDV58LvireSF5V+PbBaN97P/HzgLRvQvbn03Da92Celnj9yQwp9Q7C+DOzlcIo/1H6ya/0vPq71R8nyzx4kAsdjK8v/K6qas32C6OyAMyt12aEi8Z4TGUoyqkYUYMUYoHZEbtDAymgcxB7umDTykoNQfcNv1jA9s7nY3wA22w2sxJFa2LJPqjphTkRZHFDG/JgGHsqxzV7fcaOQJh5jnoftnlVn6jvMd10vCj0PK/lg433Wx6vN95K9uSPDw8mGT5vspvjxAyxFGQt8inVo0uzDiROzmLpYf2EIxGHwVFXoX8C1efe7xnZm2YYNtv/4dTfd5s3knCrsrZ9HR+oGZdR/VCRGo4SGWK8kAX1c9dUK6ybf/gP53pWN/hpDXKYLnQxbY56X129gmMPMQLjGySNL3rMNyAf7lbyDD1fyPnmKHd0jqNv19OgTFtTtnN8rqnw/zvknxPn/r6zCbCrRE/3SqYH0LcwUxi429Dpf/FyX6pvJ3W+j3CH9ejjCLkWlIM/rYvT1F/+g7jfv0JN0LGAAJBNALkAoIOlXRBQZTEhWkwwK8r3+DkP6hNdDos3/liAqMoBrGFXKMeP8iA9fgRzf/ZIrUol0TDKcTBD9sXQk734vgPwoikvIT2x3XhRkzBXBZj3vv+Tdb3f/A5K4J8R0+PK8ljjINeTpeO7BpK6qZTfJCLDxK5xqItTmVAREQd5AOka4W5Oo1Mk/LS4Gy9UgVwheZxXJ3QH8YQuDSnGpzNGC2FcjXqtVib9cVy9HxPHyRzXzGbn5jv7sT1BLBwixkVB/9wYAAHkfAABQSwECFAAUAAgACADzsu48sZFQf/cGAAB5HwAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAADEHAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
  
=induktive Satzfindung einer Umkehrung=
+
===Variante 3===
 +
<ggb_applet width="884" height="510"  version="3.2" ggbBase64="UEsDBBQACAAIAHW27jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VnNcts2ED43T4FhZ3qqafBXZCMlo6jTjqdJk6nTZCaXDkRCEmoIVEDQlvwyvfQFesmpN9/7TF0ApERKthLZzoytC80FsNj9vt3FEu4/X845OqeyZIUYOJ6LHURFVuRMTAdOpSZHifP82ZP+lBZTOpYETQo5J2rgBK7vaHnFnj35pl/OigtEuJnyjtGLgTMhvKQOKheSkrycUao6clItGWdErl6P/6SZKjcDVsmJWFSwi5IVyLJ5/pKVzeux2XDBmfqRnbOcSsSLbODEEZgOf72jUrGM8IETYivxB46/NQiiQI/OCskuC6H09I3yCUgQKtklBUR8LesfG0f7tMo4yxkR2hljB0xC6ILlajZwkiQElZRNZ2BrhBOrLSsKmZ+uSkXnaPmBygKUhpEGemXfgrCn30qwi+p1Zqj9ZtTQ81OqFNBSIrKkG8CmkuWdl5PyRcE3okXBhBqRhaqk4TSoRadqpTeAvaQ2eCimnNYyHyCf0exsXCxPLQiBVf12tTBLjEHj6ajghURSwxvBhPo5tk8zR1u6noXNHGxm1Dq00vW4l/pmhnmO7dPM4kxY02rPvcZrDzfbsBJpgYYRQnHtPCdjCtQ6qBJMvWxeIATOalc9u+DXaj6GHGgHwVqnd186+8db4dM/o1JQboNEALdVUZXoXAej3csYktOMzeHVDjQea7p+BwOsNKdTSRvDbQZZwNprbCBuifvHjRHahhJszRSUAvBHaV9+qsSZfodgRC+okiSbqUpM0Rst12UjmzE6BolOaQXppLHIiYKlujxQTucUkkmZwDFxtwbwlbOuHIUpAk261+MbKmD42iAy4Ub4YkZA0uQJJysoCW2/jb5XRd5FY8KWNLeSzU4GohIttb40gTTUJTGIHXRpa6OZZNNHJ75ZHdTcWlc/4/SLB+104Kahcdp3oe4d5HRWzOdE5EiQOTg9YjLj1PjKdCVHBGvCEfE0BNa/SjUDmVVWq9hBEOKSZWuEMqdbEtQMMk/QsjR1S7Ur1M0wt9LrJpzx7VH+IuPgmKDiHEwrZInQEteH7wrbDdFlI1kCZkf2UPBq0aXXYgaOY8mWaNjMHzazhnDKHcVu5Kc+Xv+gOA2DeothaDTrQB9G8KcJdWvcR2EdKG1JKxdQhCYs28/6S/D7Szkn+znXEK7ZIrekvFuwvy7nmyQCRHtxnUWpLR1H0C0lONmwgONDImWLDDaH5idjaj8ZJ0JBeQYcthjJLCMEHroxavxsUTPcT023oA0fdEGDkE7bsGPsG2awG3ekOi1uX+1O6VTLt4Ae3hT64/34lrW2BsHxwy94HcAjC3HkpvYI0SUo9u4r4A2SfAWt7DrAoT3Z7ZrOKF3odvW1eCuJKPVnSzdMbqbzjQnw7azZZnH0h3dInujptytQnm+ba/O8a74QAb2kafDge2ShFehudUGpbXQbGtACFJrPhZZRG5Y910+jBPfiXuqlkefbche6QZrGYZJ6vh8FOEnvklPXnCUaQpNSr3bIyA84TfJHdZoELg7aoCa2K4VDJvA6FNgKduS7UZgGUS9McYD9OPr6B8116ZLvpstByXKrQ6X5Cr0z+veXJMAC7nm9CAe9KAzXWYKBsxBHaS+Ig+j+T56RTZPhDgn0sJOHPqaTJ3B7XVwDmyjQevU6NCQG8NQNeziNcRKFQYBxtHPV8HDPp72k77Ybk8NInzwm0n0g9xrSfTcOI5ymfuKHaeyHUd2Ge6EbRRAFfhokoZ948SNi3VzQXd9ijmwvv0v9f//s597cIq1Jg9l6PdhT1XhDM9cLkjgI4QMyDuKw53+O+H3tvod3mQ+/kPl9RAVbRBGZbQpo1Ag5Ly5+oxNOlwbJLWo69zfLhQTFuv7XXr2lSwWFHwYGzncfq0I9nV99mnIXDavJFKYIOCc4r8T0h+++9fDTd829GEU5FfauDI0QE0jfVn+gLJsJmOyaye9JiSZXf3OuUM4kGlNmZv0srz5d/aUVlGgqr/4VoOg9E2eUl4hUk++RWXxBhUAj17WqjmAE1sgZ4WOz8BdJWQnPepTN0YkQVFLRHl0vnYB0bqVGhjijU/XcOmxA6kaPAlScLkR3/Ra8Q1EoFZHK9CJIV4YQ6nva/kX16Rt3bvPavB+3L0DNnX/9T49n/wNQSwcIe7Bi8UEGAAAmGQAAUEsBAhQAFAAIAAgAdbbuPHuwYvFBBgAAJhkAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAAB7BgAAAAA=" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
--[[Benutzer:&quot;chris&quot;07|&quot;chris&quot;07]] 21:12, 14. Jul. 2010 (UTC)
  
<ggb_applet width="1209" height="575"  version="3.2" ggbBase64="UEsDBBQACAAIAGRj6jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvdctu4Fb7uPgWqzmSmM2uaIAH+JHY8sr1tM0kbJ84mM3uzQ5GQhIgCFRKMJT9PX6A3vcpd7vtMPQBI/UsW/ZNYmfWFKYIQcPB93zk4BKCjk/EwRZ9ZXvBMHLewZbcQE3GWcNE7bpWyexC0Tp7/dNRjWY918gh1s3wYyeOWazktVV7y5z/96ajoZ1coSnWV95xdHbe6UVqwFipGOYuSos+YXCiPyjFPeZRPXnc+slgWswemkRdiVEIvMi+hLB4mr3hR3x7qDkcpl+f8M09YjtIsPm55FEyHT+9ZLnkcpcctYpsS57jlLD2EIlc97Wc5v86EVNVnjXehBKGCXzNAxFFlR4d6oEesjFOe8EiowWg7oBJCVzyRfVXXDqFNxnt9MJb6rmkuzrI8uZwUkg3R+DeWZ8oeVyE9MXfEtdVdAYZBj1TfTObvdDPs8yWTEngpUDRmM8R6OU8Wbl4Up1k6KxplXMizaCTLXJPqVkWXcqI6gL5yZXBb9FJWlWHAvM/iQScbXxoUXNP0u8lIf0Ub1OmdZWmWo1yNh0KF6toxV11HWTqtZes6tq5RtaEanT7HoaNr6GvHXHWtlAtjWjVyXI8a23U3vECqQMEIWpwOPo06DLhtoVJw+aq+AQ0MZkNVX/hXOeyAE8yrYNomvq82jw6X9HM0YLlgqRGJAG7LrCzQZ6VG05c2JGExH8KteVBBEim6fgUDTGnCejmrDTcuZADTT+15IS4VHx3WRigbCrA1lhALYDxSjeXX4YD181L0MHrXB0UWyncl+M1x693H6OTkpIWSSEJFFQ1YyoYMfEdqmWiVTeFq/45b01CRaa9fRnRuzGBKwrUdqv7rqvrQPIRvr9WUVl+UjvoRlNRuk0YTCBHzMOje/pkli+BEAkA2PUo2Ug0oGkeMJVVYlJX20Qia1J60YC9AW6AxOKwVEnBfbQF8uDbf1pWM26mIoTt2K00Y0G6A780qeCY4Vs9nun0QdLp8zBJTMutpNuhQhyzTbqMhx9lwGIkEiWgIQz7jeZwyPVKuJgAU2UY4KMIKAjO+UtaPYtNc1cgKgiAiHk8RiluLoUT2wWMFKwrlU1N2Dx9Yo/btOdjJdJh8mPgMlmR5gdDYrsQ7sWty6pIxIHpgphpcFV3jOebAGXI+Ru26fruu1dbzqRU69uwPGGq7VQ9tAg0bL2hT0wepbPskjP2FiZPgXTHv8ni7KN5GkyVFvDF6UMJYVkS0XRE5tFUzGd23Hh6A8pmHGRiVjx1A6kDD+T9P+5xtuV4ToSyRwYeQUsVcTiFNVZB7ISRMYUxPCasz04CxkUoJXot3eSQKlRsuxojNrE4bXuI2NtxGK8ye1WHgYjvFi2HzbN2ssxA4NxDoEc2gunTM5e4c3jpKbhvhxa0mhvsb3g0zg2MFwVygsJ0aAT9c/LvLvHGhEVkW0rKC2k2E074VrNgxebC+NpxzX3e7BZMKM+PnjrMN9vtKV3yLejQIXJf41KWeX8UYx6LU8Rzihz5xsE8bZjI3RfD2phm9s3v87uxX/F6D6EQhSlyCsedRh3jEdaiJ5Y5jhb7rOS72PT+kfuDvT2TfyPbFCtvJ7mwn+8a25y6w7Rq/IpYXzLubo+n2rZB6gWvbAXF9n2K8P2yvT9kN4X4N4BzlvSYpe28PSH9EWTkmlk8DEhAckBDU5IXLafmaaK9y9NXYdId8fVNm1zOi6KxI4tQ8aDI7n37npGfm6di2wpBQzw6x6wPkQaAd3QVEbUDSDbEHyQAO7v+12KAWrvGxfhMf6//hY0187AD7lkMwxTTAFDwsdB+Tj/WNKJIVSZw397Hzb+tjs/T3wPHMZOnv5oLApRPY1Ce2G7gepZA0VblVQBX+EAqpTbzQo3dxwlegwSW0zzdFNLYdZyXnKYxsD/zvtmnsgWtBPkMoUZkOwWFAVhb0b5nZNOLpdJNXdBvw1N03npokoIRaNLAdDxPiwVxGyIPTtCmCdQ1XbIWrs0bLPo8mPyChRQm2qRtADAodatY/ICWAWcQOfM8JfJe49fs1teCtz4eAFYK7BI7v3SZSXbKeKl+fL5yuAMu3A1tUrdXQ8Vv6wS6LbvfvBp6FbZgcbByEtksc36myM+IEHrxpeR72IE8z6FNiKYIgbbOxC69ihO7Pa9h6zqvAd7bC+cdmnH/cK86JBZ7lhKHv+KHjERJW2YQVwNxEffDE0MaObbIB37Ncx/VgbrJ9eGVy9mgJfT3nZ4bz8xXOB804H+wT58tujuudkkU/p67mPLBsHyZG0EjghZjSPVpuWc95lYi2VzhPm3Ge7hPnS25ODefLXl4lothddPPgvjKcB+GcjUc5WKJW9ytQ37GxhAHCg+PWk09lJp9doBJU8QYVHC7XV4yjLiskQxelGEhmofbp2TliXKC3LO5LFg8s9OQv2H52yq5Yr6qG2pYu+5ChQSQEaqOUw0NxYqrO/v3GeNwXTLXH0OtcFoAbB2LAwPbPCCxgQ5SU8P1cdVbo70RiACgNCqkNjcouehKNsuLZ5ajMUSTMDarqWGZQGohFjUoYeWsRhu+pv0JGudT7TUgv/ziQx1XCcxc2SW7m01ng82+AYil6GuIcTY/doIQV1cmbIpLXrNgdKOe7AqUP0RUs593ZYUB9lgxQKupzUusg9S08f7TAnvq1vVTaBGt3AevzEnU4CDMxYLeFvMpysBZEzvIT9FJpkqEkKtDLr/8uJJQKpVilai3mUf71S5dBSI77f17yFP3vPQSCEr6l/W+RyksgcY5T0+Z1qc9VluB9ORNPTeHuRLuPzSM0Y8RaXPXcvKHdybKURWJq71CPB/oo2UocvcsJqN0HOVuMgjdlsxvrbd2OjaOR3ozVZRdaHgKps6kghWEpgf3ddEoWdPqBCdPKBy4GLEUX7TdaUjrKQvEFuNcIJMvZla6ghaPqXzIVrS/eIFD5zyBkaMaCv90lRXaX1PpjUOIb6s1ee8KANosQdAF5FR0AvvMyj/tDqAyWKad9mTNewDVR5Wrqq2bhBsjSuyKbfVNkTSJtWyHZMfxu9ezsUXm2mVmIG+zs2a++/rdY48u75OgXm448jJrl6KMHzNEd26yA6Wunut49U1972mei39rwfKFvcnXb8vFS7b3L1b3FfAMA0z+cALtU/s0LyIw4RBSBLmUJF8nENHabxPgXLrpfv5i8ASJ+Atn231k2ZBKCfZU6f/3SYXkaQXASJo1/+tfdw5B31zD06VuGIa8+lWRvzrG3Bp5PjyrwVAlS6O0ceD4wrib8HutLw37xdHsQ0j/n2HBuFi7OuuM4//vP9lCkf3MwBQdqL2GKLeqDp6uNBz8kQejh3QFumEVgexV/vKPMmuxBRXk8t+5eF6ZpdvWWdVM21jBvCQ5bRSkelSjN2VTXc3cW5T942r1hveoiSye9TGzai9BCVCuW7roVy/ccmo0H1bnfSB8Ahvod/QG+EesP5LiVmJPg23aHjBk1htOWH24u1YuNQIlal7qlUG+IccuZQfT7dxrPH9szN3n+MlWd/aPqx91V2U5VvHdU/cCbIdupSvaOqh94D+Nw/tek+hfU1U/In/8fUEsHCJ7ZrSJuCgAAdD4AAFBLAQIUABQACAAIAGRj6jye2a0ibgoAAHQ+AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAqAoAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
+
=Beweisfindung=
  
(vgl. Idee von Frau "komplizierter Doppelname" in einer alten Klausur)<br />
+
 
Kann bitte jemand den Satz auf richtige Formulierung kontrollieren?! <br />
+
==ikonisches/halbikonisches Beweisen==
Welche speziellen Art der Einführung von Sätzen im induktiven Bereich lässt sich dieses Beispiel zuordnen?
+
 
=Funktional=
+
<ggb_applet width="1080" height="620"  version="3.2" ggbBase64="UEsDBBQACAAIANOV7zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1Jc9s4Fj5P/wqUpqorOYjBxq1jd5fjbO44k6k401M1lxRFwRJjilRIytuf6cv8gd7S6833/k3zAJCyKFKyKFm27OlcZIEgCLzvfW8BHpWtr04HIToWSRrE0XaLGLiFROTH3SDqbbdG2WHbaX315WdbPRH3RCfx0GGcDLxsu8UM2pLto+DLz/62lfbjE+SFqss3gTjZbh16YSpaKB0mwuumfSGyUrs3Og3CwEvO3nQ+CD9LLy/oQfai4QiekiUjaPMH3f0gLb4+Ug8chkH2NDgOuiJBYexvtywTpg5/fSOSLPC9cLvFsW6hsC7HLV2EJiav9uMkOI+jTHa/HPwQWhBKg3MBd1LZtvVILXRLjPww6AZeJBej5gGdEDoJulkf+mJHjimCXh8maxFHD+fHcdI9OEszMUCn/xFJvN2ihEtJn+lvTH9LYWLwRBOrS5Pf1DDi+EBkGeCSIu9UXEqslwTd0pe99EkcXjYN4yDKdr1hNkoUqCxvOsjO5APgWYmc8E7UC0XeRkHmfeEfdeLTAy0Fpod+dzZUt6gJdXq7cRgnKIEbTBM65J8d/an6yJmOe2HVB6se+Rhy0PF14lLVQ3129KfqFQaRnlq+clKsmuDiMUGKZIMUI+jiePGh1xGAbQuNoiDbL76ADhzlSyX6hn+MBh0gwaQWjMck1zXm1qMp/dk6EkkkQq0kEWA7ikcpOpbaqJ+lJtIVfjCAr/pCLhJPwvUvmIBu7YpeIoqJawppgamreFIRp5q3HhWTkHNIYa5+BrYA1pPJtTwRJyJID4OoO4p6sOIuylsu/ugn0CSpnAGNpAi6XgZ3SLMgQjEQQKJM6YtSt7HcXrfGFiNW5C9onl+/RAAu1+qO0jIvHPY9aCnoEXpnYAoml6vGex13y0I4DE5FV7dcPklJJkWn2602NpgF9JO20HZa6FwbRdVL00YyXt3Ockz1Wq9Y9ZP3pLruskJNQH4bK2cG4/nCLdps4X48GHigGpE3gIXvBokfCrXaQJpx5GGJOvKIFoNe4SgrLvl6uHyQihxBKwN/LCS/VTYIWR94F4k0VVYrm7RPs1VsAUnj5eW80OTASYjoGKYWJylCpzj3vWdYPxCdFy2nRCmlvEbypnMygQ144yQ4RTtF/52i1w44uTbBBie2hcf/YB47LH/GDpd/SHXfMWVfqfB6ch8jvYBUG7R0CCboMPDn4/5PpfBl2P0K2jvz0S6zZmcFW2GS1SnjRWB5lTkE7z2UA0jbPhSimwu5wBQNYUjlXid0a8KqgIPnFmWWQ7hLXAebOdM4ZdSyOTYxtm2LWKvwbh/0bkr8O5p1rysoePNRkCo8FrK3JOUaW7cVOFc24KZlM2q63HUpZY62asywnCkEQNRtC5qhm0ktbpucm24TDk/RJBhAVOoH2XyY9qIMogKQUIUqCiuvgtXT3HQ2Ic7TK4gzAw2LKzjkR0d/XAMg69H9uc72ls1GyanSybVzWy2eGoRN6+jyxF/M8O420Z/dpSRIMZ+gs5TkrRtealgWx9yB1IxjiplWPm5YtsttiQwmxOTuKuI/ED3ZPgXA7izT25mPQ5qPVki6M9v6mssEPBBOdQMtWej+Ju/dvwHLTA2wtGWhKyowPAWQtMvMwKbNXE6YQ0zCLXOOXZ6Wwzy7rKAIpcaM7TDIopp0HQkxlNnum+hd4kWp3PYoh85L6sNORR+6zfShu/kB8KT5o6ZFseMwgjGzHVunVhBqMocSx7EZN4lt25p+pkE4BUdAKeUONe15mDfxxbeN+ZMK5qIZ5uIuYU4Nk1ObM4sTTFwAXrs803BdTB3uuCYD6LXDa1MCGgIxAOeuYzumie885juzMD9shvnhbMz5xmEOQbdNGFhpAibe4WDkHQW6bTCbcptZ1HWYa2HtZ9sEwiLbdQBt6prYcYud0oVWe7dQ7zVDvXeXmL5O1G+d6+J0mMBMZKCUi/WdOM0gCoUL263PP47i7PFBlgj/SKDd1+gkSLpIwBTEuQj8fiQy9PnfCX784BgG2DfQcZz0RE90RPRQ36ueV1aGDB7QKj9tY8O6NPOSTCUeSKqCZRDiTvxz8jAbT2w9wT9zMs6enc114jgUXjReZ1/JAR4/EhVQV9lIXnz9bw4PU4AUVsqpjltdcy5JvKECQ7Ud+P0kyDJEvrgqjwvPenE0K5FAHq2zMN8EMJ5/RHS3znuiO/rqD7bdGlyV9+mHFlIbD3e9hqheP4MqPsRkk3n4JESkiYrO1q5KhvV+Exe7eWnW7ZvkuTD69wvGRfcxuVW/kbnZznUukoN7heOMfKhdmxDd5Xyo3n29LvY9lFfaneW+qO7mv6e646BwX54+MWzswOitKRGmpVqIG/BgUmobuNqlOTPD9LXrz3DWdYRzG5bvFn3YOoBsz9gArN3/a9+tDcD5SHr3DMl7HFXWJvq0lOj3QpnUp35fREdh0BPowTsRhO2HTxMRqB0AleufiKQrItQTh6NI/iGrpQZechSIJFs86aerJv01KrGupB+7pX+5Tth0uTQ/2Kg0X29hgDFqnOfTK/J8VWpZHybtzsry//xufhSk6gHHMoHeU6LEBndtiDcJdSxsE8sqSLlYyUa9pn2oyr2oBNWSV6ZoLHu2oLaxOeaCTZkLL/EvD2qtojEM45O34jAUp0rWFW0SA5iSrN19Oy59nerTDL3xQY9Cr3rm++f3jdD7fjn0mpmJhuDxBcGrlOxuPHg7JerVgPdDI/B+mAYP7KBNHfCGrkMc22brQK7IXAufX6q9MO8tdLul5LIGuh8bQffjNHSmQYEFLiEYoh/imNZf2C2IXX1UxUpRVTcQ6CiOeiBACOci9ASGT0+C6EiECwRU6nTlYHSA0jgM5e3d8hCpl52jIxFF+Y1edCLkKA3OX9iqoVgN2msLxaxxWd3M6KsWE17C5ClgcjAaDASIM0VJnHpKeL3k4g8pyH9r0aKOCNCuBkkkvaCToQDuSeQJGPR6K/x+Nu6NHsiXdF4kF58uvhXIxQ8fq/u8kd9HAEkEA8kXkPx+3IF75EHa4gjxVRGKbwohalA6eRRG9JYGN1xnsWi5XKD37LbfJriuCj2Qi5YEnZLEaiWgz++dfLhhrlKl+DbOvGzafz7T/rP94M/vH2of+rziQ5997g3j9PF8RzqlnPkty0GwjiJkUC5qutRyCMMEW9QqNhSJxU3uWJZNueVQtoqE6wKUQhJKzM+1iJ9Vw5SfGoUpP12ZHjgrxyk1dnFedrD2MMW8iRCzniOTEAJTfriKKUvzZeNYwwy75LPyGEOaIjzly9ZCmzryXEq3TKFPjSj06aokDdN1UGje1uz9oFDNS0jPCgCnMTuaD1npJaSjO/USEjFM7bX1u3zK0zDOJzkzb5Prel40qoHiuYaiYqhKsIQNYAnvFCyO4TjEdoDkNhgtatJnbVKkTWbZ0hVHiw5fO051r+8cVVB50cShvFjSiYBM9Bv41NzACBhAAgNNbIvb2HQgWrv2t6bCithfNhH7y/skdlO+OZUL2qQgeLPe+a/0rnid839Rcvgvq67+50au/udpV88Nm1DmOK6DmQNRv3uVp598W/6G9hDmOflpq1Ny8gQv5uWbFri/mOXEo/lgTJ+LRzdyKr6+XZ1SSjlBDmLbZYdvGcylk+bqmvzIrb3ikMcOVT4Om2nA8N5oADFs22Km5TAXQjtqYhPiCTOv0uRl48mKV9xMd9KDNeH5hlRGmKX94sHFp15oIP2jMKk+ABdfLL6Bay73ovp69mi5wZzqHq1pYDZV5rBMdcOHjapuyGs1qDVX1euqG1ilumFeSLR3VUi05p/7ubYXydnS+7DzxPP1fdmmbmODXs9GdU3auqddz9cV1/OxQar68VpS1evk49wKWJwXUxWHIuBRiurh9aWi9Z5/pviTZp4/uTeef63w3ECE9zroDmvS35lAv2qSBb9azuSv5bdnIEQj09nqug7T9sZHBN/lRwSvKoLca344sLfYscANCpUZmLjYZTbHlukyi7PiNM12HIiEIaV2bNvm174zsDd5IPBKy3ivuj/wS6P9gV/u7mlaE4tz8wVb9SSZcZo2kypLE2bjaAO2qFwvbRa0uf4DtL3qAVrBl1kHaL82Ys2vd/cA7e6yZoo7V7qZa2HQxvEIG/LXJi7dDBm/HSa9ErYo+CTwTGylH1O8klSzqTWLYL81IthvV7ol+y+3tB6CTdHsx5k0229Cqv2NohAt/VyH69o3VNmxP5sxs3jzeyPe/L728vv/E7dUv/trVaqF92SFdV5yrQqHPwhZOpy/GpeinSe7qCOy5OK/vQwRBxt55bYsz774owNCmR7hoepxAGOnIjvPUBr4fdQPoKc3ShG9rEqmU3XJETofpR6MEOmHPPUSecdhHPayL3S1MslvSdQARI+V1ymnATQVI6C+F3ZQGkP/+OJb9MDFD43Ft7WthX8/85bLkq18JyP/3fNlNrbjDdzYZqT5z/Pwysb2o8lfxJffi/8G48v/AVBLBwgY4h4VHg0AADhjAABQSwECFAAUAAgACADTle88GOIeFR4NAAA4YwAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAFgNAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />--[[Benutzer:&quot;chris&quot;07|&quot;chris&quot;07]] 17:07, 15. Jul. 2010 (UTC)
<ggb_applet width="1280" height="750"  version="3.2" ggbBase64="UEsDBBQACAAIAGF46zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VnNcts2ED43T4HhoadaJkVRP1MpGclpZzITx5nITWZ6g8iVhIoCVQC0JT9PXyDJI/SeZ+oCIChSshXLbqe2PWMSi8Vi8X27C4Duv1ovU3IFQrKMD7yg4XsEeJwljM8GXq6mJ13v1csX/RlkM5gISqaZWFI18MJG09PynL188UNfzrNrQlOj8pHB9cCb0lSCR+RKAE3kHEDV5DRfs5RRsbmY/AGxktsOa+QNX+U4ixI5yuJl8pZJ1zw1E65Spl6zK5aAIGkWD7x2hK7j20cQisU0HXgt30qaA6+504miUPfOM8FuMq60+tb4FCWESHYDiEjTyuKMy/ciU2dZmi+5JCTOUr90MEuDynuz8h6WK8NGq9IRuY6a+Qx7SC4Bp8mEdOoa3guebkYI5mKVMb4FrDb6Hb1iM6qQyhEVZpSzsErpZpQrpUku/NGi14B/EB5N+woNOBXnJZdjBSuHQv/U0N2HPE5ZwijXlBo2ECpCrlmi5lq3q5EFNpsjZe3Adz5mIhlvpIIlWf8OIht4UaenJ97YVtjq6pZEehD3yDdd1ZYxA1djUAqjUxK6hm3czARLao03cpSlW5FB7YyuVC5MaIeFaKw2egKcS2iHh3yWQiFrIgJziBeTbD22sRBa05eblRliHJrMDFdE6CiLUKF4TuzT6GhPSy3f6PhGo7ChjZb9Qa9pNMxzYp9GK2XculasPHCrdhDTNZNEC3yvIL9YfEongBHukZwz9dY1MBMWxVIDO+BdvpxAGXZ1m8G/ZbN/uhM//QUIDmkRyMhtnuWSXOmcrMR4AjFbYtN2FJBQTddv6ICVJjAT4By3hcQCZnprgbgj7p86J0wyoa+xTiNcj9Jr+TXnC92mqS5dCsuGXmxCFfZ5ZsxySXlCOF2i5A1XuGIsa56ej+lSRigWi/UQwUQDWCs25tX4k+XKKZxbVwprOtNSWAIWI2UizgRsify5V1bezBRRl7ZF/5ZD7C6jq90ywaUfE/ug6WpOEQaXYVgRsKZWETMGz7PkFhwlWduhBMvIiXm5sduI0bEppquDGRkW/NtVfWd9owetr5pdJg8fujzKMdxMDEhTAv2GDugVQFJsk6qoAqaQmppSq8gOnKgA52hs6jF1xkScwk5AndtgGu0FUnw4kDDEWVwCGXv16qLmmMQcpDQlUFWL3d1sVNZ+Fx3+w8m4l3O44wC/Qtdw5yRk7Rc8bXwHvpOsAxerm6AQ3QQVZpB3wdZk6PSHTmuIO/tJ0zA6DAurw5YzNowqK4M/uXVY2mqIkROzKYsPs/zeZECd5HiP3eExZWL4oDQKmnYrM8+nkkonLpfajaAZNsOw14s6YbvTbv9yErQfk11jmGn5DvLDu9KLHiZAFtYcxPTpJ9gW5Duw3ehjRlHCTsKG3w7wt9frdNvdsBuiTnRMpu4kB1vicT5mqgQ61VFQbqMYOfvngQXASh/ELviloFzqe4nVqZwzHpVlZ8dk2dl3suwO9p5kmt3Gro2A6HF72Ae62UH9zGbYcA/8yWHwBVpy0E6eU3a1Gr36jz04OWDN3vJs8uhOPvcrZnJ/PpPnxKfbkRyBJ8+LQXPdvX3X01Q2b6Py29fDXJo7WUkEauvx6E9eYBg0oo7f6bXDZrvTa3V77e73yLz9iOJu25bNKKjQGd2TzuAIpqiIt4UucsI0za4/wDSFtYFyjxtYokv688iH8uvCjs5x5JQJZsjZr5vfvhxFzpddcvxGpxuFvW7QxhNAp9Xqhg8jxyZa4O+n2mFuLqZTCcpcKm1lbD36WvA0iBu5nc4Qd7ZP3OejiPv83xJ32/35vkn11Lip4zjJshQoL1GAXSAr35gfAd39N5dtxPeibnHO7hzcfOjKHPKMbEzVDUlAkss5TUHurX29Egi8Vi9cv4S1wlKJHQPvxz/zTP38CTgnGHMkYUDGSkC8ADIcmX8KxHMGE/UTucYubP/9F09AKCJZPCf6y/snxheQkm9fX1lbZv464Aon9Oqz/59bt1RUKHMBIPa24zf9yk9gGAgbnZrUr10uqwCfVr8Wmi/kxT9KXv4DUEsHCEgiJKX9BQAAWhkAAFBLAQIUABQACAAIAGF46zxIIiSl/QUAAFoZAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAANwYAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "true" allowRescaling = "true" />
+
 
 +
==Beweisen am Beispiel==
 
<ggb_applet width="1156" height="522"  version="3.2" ggbBase64="UEsDBBQACAAIAJp47DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Vvbcts4En3e+QqUtmpedsLgQvBSYycle7a2UhNvUuNspmpeUhQFSYgoUsOLLftn5iU/kDi1P+B3f9M2AFIWdaes+JLVCyUABBp9uk93g9TBy8koQmcizWQSH7aIhVtIxGHSlXH/sFXkvWde6+WLHw76IumLThqgXpKOgvywxSzaUu2FfPHD3w6yQXKOgkgPeS/F+WGrF0SZaKFsnIqgmw2EyGvtQTGRkQzSizedjyLMs9sOM8mreFzAKnlaQFs46r6WWfXzuV5wHMn8F3kmuyJFURIethwOosO39yLNZRhEhy0bmxZ62KJzndDEVO8gSeVlEudq+O3kPWhBKJOXAjTiqbaD53qjB6III9mVQaw2o+WAQQidy24+gLGEOzCnkP0BCMspNtOFSZJ2Ty+yXIzQ5A+RJrC4a1sOYdxxCae268NtF2UP9izsYua4LrWx60FPBgKDJDaA4zrY9jH1PRduhHtWdumFxdmpyHNAMkPBRNzquJ/Kbu3Hq+woiW6bxomM8+NgnBepNgNWNp3mF2o10FuqttiO+5Eo2yigNBDhsJNMTo3emJn63cVY36IF6vSPkyhJUaoQAfn75bVjrnqMknQ6CusxWI8o51CTTvuJT/UIfe2Yqx4VydiIVu6cVLsmuFpGZkg1wOTKeqebj4KOAGtooSKW+evqB1jNsNwqMTf8uxh1wG1m7WY6J9nXnAfP5yzuYCjSWETGrGLAtkiKDJ0p+zVraUG6IpQj+Gk6SpUECq7/gACmtSv6qagEN05nFKZ7a6Y713zwvBJCyZCBrGEO7AH7ydVejsS5kJmIUTBCR/BtLEWkHD4HZ1Pb7gY5jGqp6c+TdKi54Z2Y5CjoJGcr7wedKYXq9UUkRgJcNNe2pU1zquOT1pSPEk0tFYmU/bdoQfdSO9MWGUTjQQAtVqmIKLgAoplVjZ7vJOnWFRbEoHitDXD3sZpAQTsWoluSa176AxrDlNq7ZnDT6s7Q5LD1DFYGk77QIsCXS3O7HmV8URGPXpmVhmKUskE9R9+HemzL93bUTpiMRkHcRXEwgpWOZRpGQitFqpCDAqxsCAVE6cooosirjtBMVk6xoGrwBhlOVRm26kSUD8DfY5Flmi3zWV5cjcfM7lcBgneHYyvhIJyJ+AxES9IMoQkukbrAZkF0WbVMiLFb6CNl0yWZQQaQT+UEtavx7WpUG8LxMwqY+orG26ycuG1X+LZ55RFGoj9jI3Vm2BMMKJQ9Ga6H+jVsdg7oIwP0yQLQwXqgld6mEAU74lyPDZsd7w443zqOgQe0yTU8xgMb2MKc5uUI8rBQ5us1/yrOIarBpufUHxr1B3BROVq1qxkc2utxqHNbeyduc2ytY3XpmMvdtay0uyt711V3KvqqfU5x7VUE1Vmvr6ycrdJIZ7XpuvukqDvFjEXjJbg0XuCEhXxvzR7WWa9WY6RCztRaIUwtplZDIcYqp30Tv0uDOFPlkBkzk7KtiMQ11ug+/uiwr2ANCzMoTRzuccx8z3O4X/nGYvtlyU3fmpPeauqY56N5fzpuwj/HO/EPoaYQ0tfHkl/BfZz63AVgGLYpszHXkAEyxMVQa7q2h23seHfhtrdJdNFP4uXcdmyCwiLFQR0UQaFJytjxgZiBof4CqUPnA9kEmlm2gmU64bdzyPlil5MZiEkTiFezyzy3K8080I52j5sqB5y1L7+0OuLOWiMzNEGh3fNsBqNd7lGOnT2xxj3Egnm0wieI1nKwbMujLqBk+44DmDluCZYq2YjDfAyd3CPuEwar8wTBmib+0+Rpfe704BDUY4U+a2wYKW4+bwoF+khsiocer+YAmYpSj8TiLnZ9h1HH9W3Pd7yNldzapIzgxbSMb4lpk1Q3SMPbOOxUjVGUnP8mepGYaH3WlQ8Yj0AidaL92/R4dw7DpoXK8aoCWzQrVMTTKlSWMyNUK/U4ZmO7qsGhxfcZZtyhxHEwbwD1A3vmcuDLI7T2AvC9ZsD3nhbwS45XsD/3+U6gXeTbfjNo+4+/Al4Elt+ePOzr3OyBoufUQ3X0PF4SPZvFzvnIiS3X8bAPIZP4NqbUoZuwXF4fV+nQ7nGzCVAN4uYMNHcJnJszm8XoeXNFG4FzRTeiQx4KnSZHPY8DnZNNeedVs7TzaiHrxJaHqeO7zLE9bjtuVdnu9tyOcPZN0OGPEp3jKjyt8p0vjcD5shGbHXnt+8Nm3dnoL4tnow2qpkf05Jkwi9t45kPKstoitWbVvq+H9v/6bpRHLGobfTHLozV9sbscJS95tlvG0PADWaCAwXoGqD2nGezl6e59palNjuT0idzs8am7p4R2l0fwwRKYZAOY5JOCqdE5N+Dkzp6cet8ApnXs889N7PNE3hlyLE+9HOkzm7qU4fKJFkDBuU0YsTlnvo8d9V5lI+KejFPQvZKv1Id6mQ1EhI7D1o9/Fkn+s3mlrSfjbhH3f/w7wT+/ipF6c/U0HBSAzjCIYwRGDm0xOg3yS/iSoXeDIIKLHj+Sub7hROQDpaBlL8mhTtlomVW1pHVkcxCtVZfzIevrLA/SXD+JRdotPIsz7hLXB0O39UuxCjaAzPcppFrgMzarxYmdUsMTkxounk3dfG1WVn1dKKuI5WAwIxvc2MVgaTtWVfXcUF/vr67i22WHzVR/VFP9ktOGr81qpq/LTuoZFLOuT5kHnMoh0fi/0P1y/qE1/iEWkEQqwkEsYDMw3e8yHoqon17/9/ovxReKYqiFfg8y1Lv+FEVANjJFQdH7CZ0L4KZuUd6CoFpFBUB9c0VR0O1KkWb5S30/s9B7+BUOpOgI9LaIhzk6NlPbM+ufS6GIbKUYHMSQAvXT5PovJDNDe9PF0UeRX5YLOhb6o0jRr0mcp0lU0qi6odDSg2xzC6AgvtRvM4KmMuDJn/Q0CD7AzGKkbwQN/Hr9KcvDgRo/zOWZ3mIDSqV3fsV2f4zKoVhlnHmcEkgsIIcoKRUznwJLOYS5TB1Jr6DU5bbFStu6+YL+gYxeSu2gLdTDtlZPmMRdaQI/jH5TDh7el+5UscIdj3nY9TxGXVI9xHE4d1Q27fk+J2690FudVHWSJBLB7Wsnw3kCmwm192M8b3q9TOQ6NeLmbWpG1yewwVjDodtqroWqU5W9Pr+9anaMtodnt2tDwpJHt9u+u7PzETTb6tHtZp+1K5+92sVn7Tv67Mf79FmPEI8RxyE2JPW0Op2xme3YqggG4sPMtXdz2o+Pymld47Sc7uq0V9sZD6+M5/MuxsPvaDzRQxE+rv5iAlU5oZ5LfM5VEOW72U70qGzHZALUc3a1nc/b2Y5TS0Rdk9xF15+KnsnsTCFr/lYavdw+y3IeV5blgjcyF6yGOn6ZZT2j6mQBMi/MfYo9312ZKDyf/Rud/rNp+W/bF/8DUEsHCMh3h2XnCQAAnzsAAFBLAQIUABQACAAIAJp47DzId4dl5wkAAJ87AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAIQoAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="1156" height="522"  version="3.2" ggbBase64="UEsDBBQACAAIAJp47DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Vvbcts4En3e+QqUtmpedsLgQvBSYycle7a2UhNvUuNspmpeUhQFSYgoUsOLLftn5iU/kDi1P+B3f9M2AFIWdaes+JLVCyUABBp9uk93g9TBy8koQmcizWQSH7aIhVtIxGHSlXH/sFXkvWde6+WLHw76IumLThqgXpKOgvywxSzaUu2FfPHD3w6yQXKOgkgPeS/F+WGrF0SZaKFsnIqgmw2EyGvtQTGRkQzSizedjyLMs9sOM8mreFzAKnlaQFs46r6WWfXzuV5wHMn8F3kmuyJFURIethwOosO39yLNZRhEhy0bmxZ62KJzndDEVO8gSeVlEudq+O3kPWhBKJOXAjTiqbaD53qjB6III9mVQaw2o+WAQQidy24+gLGEOzCnkP0BCMspNtOFSZJ2Ty+yXIzQ5A+RJrC4a1sOYdxxCae268NtF2UP9izsYua4LrWx60FPBgKDJDaA4zrY9jH1PRduhHtWdumFxdmpyHNAMkPBRNzquJ/Kbu3Hq+woiW6bxomM8+NgnBepNgNWNp3mF2o10FuqttiO+5Eo2yigNBDhsJNMTo3emJn63cVY36IF6vSPkyhJUaoQAfn75bVjrnqMknQ6CusxWI8o51CTTvuJT/UIfe2Yqx4VydiIVu6cVLsmuFpGZkg1wOTKeqebj4KOAGtooSKW+evqB1jNsNwqMTf8uxh1wG1m7WY6J9nXnAfP5yzuYCjSWETGrGLAtkiKDJ0p+zVraUG6IpQj+Gk6SpUECq7/gACmtSv6qagEN05nFKZ7a6Y713zwvBJCyZCBrGEO7AH7ydVejsS5kJmIUTBCR/BtLEWkHD4HZ1Pb7gY5jGqp6c+TdKi54Z2Y5CjoJGcr7wedKYXq9UUkRgJcNNe2pU1zquOT1pSPEk0tFYmU/bdoQfdSO9MWGUTjQQAtVqmIKLgAoplVjZ7vJOnWFRbEoHitDXD3sZpAQTsWoluSa176AxrDlNq7ZnDT6s7Q5LD1DFYGk77QIsCXS3O7HmV8URGPXpmVhmKUskE9R9+HemzL93bUTpiMRkHcRXEwgpWOZRpGQitFqpCDAqxsCAVE6cooosirjtBMVk6xoGrwBhlOVRm26kSUD8DfY5Flmi3zWV5cjcfM7lcBgneHYyvhIJyJ+AxES9IMoQkukbrAZkF0WbVMiLFb6CNl0yWZQQaQT+UEtavx7WpUG8LxMwqY+orG26ycuG1X+LZ55RFGoj9jI3Vm2BMMKJQ9Ga6H+jVsdg7oIwP0yQLQwXqgld6mEAU74lyPDZsd7w443zqOgQe0yTU8xgMb2MKc5uUI8rBQ5us1/yrOIarBpufUHxr1B3BROVq1qxkc2utxqHNbeyduc2ytY3XpmMvdtay0uyt711V3KvqqfU5x7VUE1Vmvr6ycrdJIZ7XpuvukqDvFjEXjJbg0XuCEhXxvzR7WWa9WY6RCztRaIUwtplZDIcYqp30Tv0uDOFPlkBkzk7KtiMQ11ug+/uiwr2ANCzMoTRzuccx8z3O4X/nGYvtlyU3fmpPeauqY56N5fzpuwj/HO/EPoaYQ0tfHkl/BfZz63AVgGLYpszHXkAEyxMVQa7q2h23seHfhtrdJdNFP4uXcdmyCwiLFQR0UQaFJytjxgZiBof4CqUPnA9kEmlm2gmU64bdzyPlil5MZiEkTiFezyzy3K8080I52j5sqB5y1L7+0OuLOWiMzNEGh3fNsBqNd7lGOnT2xxj3Egnm0wieI1nKwbMujLqBk+44DmDluCZYq2YjDfAyd3CPuEwar8wTBmib+0+Rpfe704BDUY4U+a2wYKW4+bwoF+khsiocer+YAmYpSj8TiLnZ9h1HH9W3Pd7yNldzapIzgxbSMb4lpk1Q3SMPbOOxUjVGUnP8mepGYaH3WlQ8Yj0AidaL92/R4dw7DpoXK8aoCWzQrVMTTKlSWMyNUK/U4ZmO7qsGhxfcZZtyhxHEwbwD1A3vmcuDLI7T2AvC9ZsD3nhbwS45XsD/3+U6gXeTbfjNo+4+/Al4Elt+ePOzr3OyBoufUQ3X0PF4SPZvFzvnIiS3X8bAPIZP4NqbUoZuwXF4fV+nQ7nGzCVAN4uYMNHcJnJszm8XoeXNFG4FzRTeiQx4KnSZHPY8DnZNNeedVs7TzaiHrxJaHqeO7zLE9bjtuVdnu9tyOcPZN0OGPEp3jKjyt8p0vjcD5shGbHXnt+8Nm3dnoL4tnow2qpkf05Jkwi9t45kPKstoitWbVvq+H9v/6bpRHLGobfTHLozV9sbscJS95tlvG0PADWaCAwXoGqD2nGezl6e59palNjuT0idzs8am7p4R2l0fwwRKYZAOY5JOCqdE5N+Dkzp6cet8ApnXs889N7PNE3hlyLE+9HOkzm7qU4fKJFkDBuU0YsTlnvo8d9V5lI+KejFPQvZKv1Id6mQ1EhI7D1o9/Fkn+s3mlrSfjbhH3f/w7wT+/ipF6c/U0HBSAzjCIYwRGDm0xOg3yS/iSoXeDIIKLHj+Sub7hROQDpaBlL8mhTtlomVW1pHVkcxCtVZfzIevrLA/SXD+JRdotPIsz7hLXB0O39UuxCjaAzPcppFrgMzarxYmdUsMTkxounk3dfG1WVn1dKKuI5WAwIxvc2MVgaTtWVfXcUF/vr67i22WHzVR/VFP9ktOGr81qpq/LTuoZFLOuT5kHnMoh0fi/0P1y/qE1/iEWkEQqwkEsYDMw3e8yHoqon17/9/ovxReKYqiFfg8y1Lv+FEVANjJFQdH7CZ0L4KZuUd6CoFpFBUB9c0VR0O1KkWb5S30/s9B7+BUOpOgI9LaIhzk6NlPbM+ufS6GIbKUYHMSQAvXT5PovJDNDe9PF0UeRX5YLOhb6o0jRr0mcp0lU0qi6odDSg2xzC6AgvtRvM4KmMuDJn/Q0CD7AzGKkbwQN/Hr9KcvDgRo/zOWZ3mIDSqV3fsV2f4zKoVhlnHmcEkgsIIcoKRUznwJLOYS5TB1Jr6DU5bbFStu6+YL+gYxeSu2gLdTDtlZPmMRdaQI/jH5TDh7el+5UscIdj3nY9TxGXVI9xHE4d1Q27fk+J2690FudVHWSJBLB7Wsnw3kCmwm192M8b3q9TOQ6NeLmbWpG1yewwVjDodtqroWqU5W9Pr+9anaMtodnt2tDwpJHt9u+u7PzETTb6tHtZp+1K5+92sVn7Tv67Mf79FmPEI8RxyE2JPW0Op2xme3YqggG4sPMtXdz2o+Pymld47Sc7uq0V9sZD6+M5/MuxsPvaDzRQxE+rv5iAlU5oZ5LfM5VEOW72U70qGzHZALUc3a1nc/b2Y5TS0Rdk9xF15+KnsnsTCFr/lYavdw+y3IeV5blgjcyF6yGOn6ZZT2j6mQBMi/MfYo9312ZKDyf/Rud/rNp+W/bF/8DUEsHCMh3h2XnCQAAnzsAAFBLAQIUABQACAAIAJp47DzId4dl5wkAAJ87AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAIQoAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
 +
=induktive Satzfindung der allgemeinen Umkehrung=
 +
 +
<ggb_applet width="1209" height="575"  version="3.2" ggbBase64="UEsDBBQACAAIAGRj6jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvdctu4Fb7uPgWqzmSmM2uaIAH+JHY8sr1tM0kbJ84mM3uzQ5GQhIgCFRKMJT9PX6A3vcpd7vtMPQBI/UsW/ZNYmfWFKYIQcPB93zk4BKCjk/EwRZ9ZXvBMHLewZbcQE3GWcNE7bpWyexC0Tp7/dNRjWY918gh1s3wYyeOWazktVV7y5z/96ajoZ1coSnWV95xdHbe6UVqwFipGOYuSos+YXCiPyjFPeZRPXnc+slgWswemkRdiVEIvMi+hLB4mr3hR3x7qDkcpl+f8M09YjtIsPm55FEyHT+9ZLnkcpcctYpsS57jlLD2EIlc97Wc5v86EVNVnjXehBKGCXzNAxFFlR4d6oEesjFOe8EiowWg7oBJCVzyRfVXXDqFNxnt9MJb6rmkuzrI8uZwUkg3R+DeWZ8oeVyE9MXfEtdVdAYZBj1TfTObvdDPs8yWTEngpUDRmM8R6OU8Wbl4Up1k6KxplXMizaCTLXJPqVkWXcqI6gL5yZXBb9FJWlWHAvM/iQScbXxoUXNP0u8lIf0Ub1OmdZWmWo1yNh0KF6toxV11HWTqtZes6tq5RtaEanT7HoaNr6GvHXHWtlAtjWjVyXI8a23U3vECqQMEIWpwOPo06DLhtoVJw+aq+AQ0MZkNVX/hXOeyAE8yrYNomvq82jw6X9HM0YLlgqRGJAG7LrCzQZ6VG05c2JGExH8KteVBBEim6fgUDTGnCejmrDTcuZADTT+15IS4VHx3WRigbCrA1lhALYDxSjeXX4YD181L0MHrXB0UWyncl+M1x693H6OTkpIWSSEJFFQ1YyoYMfEdqmWiVTeFq/45b01CRaa9fRnRuzGBKwrUdqv7rqvrQPIRvr9WUVl+UjvoRlNRuk0YTCBHzMOje/pkli+BEAkA2PUo2Ug0oGkeMJVVYlJX20Qia1J60YC9AW6AxOKwVEnBfbQF8uDbf1pWM26mIoTt2K00Y0G6A780qeCY4Vs9nun0QdLp8zBJTMutpNuhQhyzTbqMhx9lwGIkEiWgIQz7jeZwyPVKuJgAU2UY4KMIKAjO+UtaPYtNc1cgKgiAiHk8RiluLoUT2wWMFKwrlU1N2Dx9Yo/btOdjJdJh8mPgMlmR5gdDYrsQ7sWty6pIxIHpgphpcFV3jOebAGXI+Ru26fruu1dbzqRU69uwPGGq7VQ9tAg0bL2hT0wepbPskjP2FiZPgXTHv8ni7KN5GkyVFvDF6UMJYVkS0XRE5tFUzGd23Hh6A8pmHGRiVjx1A6kDD+T9P+5xtuV4ToSyRwYeQUsVcTiFNVZB7ISRMYUxPCasz04CxkUoJXot3eSQKlRsuxojNrE4bXuI2NtxGK8ye1WHgYjvFi2HzbN2ssxA4NxDoEc2gunTM5e4c3jpKbhvhxa0mhvsb3g0zg2MFwVygsJ0aAT9c/LvLvHGhEVkW0rKC2k2E074VrNgxebC+NpxzX3e7BZMKM+PnjrMN9vtKV3yLejQIXJf41KWeX8UYx6LU8Rzihz5xsE8bZjI3RfD2phm9s3v87uxX/F6D6EQhSlyCsedRh3jEdaiJ5Y5jhb7rOS72PT+kfuDvT2TfyPbFCtvJ7mwn+8a25y6w7Rq/IpYXzLubo+n2rZB6gWvbAXF9n2K8P2yvT9kN4X4N4BzlvSYpe28PSH9EWTkmlk8DEhAckBDU5IXLafmaaK9y9NXYdId8fVNm1zOi6KxI4tQ8aDI7n37npGfm6di2wpBQzw6x6wPkQaAd3QVEbUDSDbEHyQAO7v+12KAWrvGxfhMf6//hY0187AD7lkMwxTTAFDwsdB+Tj/WNKJIVSZw397Hzb+tjs/T3wPHMZOnv5oLApRPY1Ce2G7gepZA0VblVQBX+EAqpTbzQo3dxwlegwSW0zzdFNLYdZyXnKYxsD/zvtmnsgWtBPkMoUZkOwWFAVhb0b5nZNOLpdJNXdBvw1N03npokoIRaNLAdDxPiwVxGyIPTtCmCdQ1XbIWrs0bLPo8mPyChRQm2qRtADAodatY/ICWAWcQOfM8JfJe49fs1teCtz4eAFYK7BI7v3SZSXbKeKl+fL5yuAMu3A1tUrdXQ8Vv6wS6LbvfvBp6FbZgcbByEtksc36myM+IEHrxpeR72IE8z6FNiKYIgbbOxC69ihO7Pa9h6zqvAd7bC+cdmnH/cK86JBZ7lhKHv+KHjERJW2YQVwNxEffDE0MaObbIB37Ncx/VgbrJ9eGVy9mgJfT3nZ4bz8xXOB804H+wT58tujuudkkU/p67mPLBsHyZG0EjghZjSPVpuWc95lYi2VzhPm3Ge7hPnS25ODefLXl4lothddPPgvjKcB+GcjUc5WKJW9ytQ37GxhAHCg+PWk09lJp9doBJU8QYVHC7XV4yjLiskQxelGEhmofbp2TliXKC3LO5LFg8s9OQv2H52yq5Yr6qG2pYu+5ChQSQEaqOUw0NxYqrO/v3GeNwXTLXH0OtcFoAbB2LAwPbPCCxgQ5SU8P1cdVbo70RiACgNCqkNjcouehKNsuLZ5ajMUSTMDarqWGZQGohFjUoYeWsRhu+pv0JGudT7TUgv/ziQx1XCcxc2SW7m01ng82+AYil6GuIcTY/doIQV1cmbIpLXrNgdKOe7AqUP0RUs593ZYUB9lgxQKupzUusg9S08f7TAnvq1vVTaBGt3AevzEnU4CDMxYLeFvMpysBZEzvIT9FJpkqEkKtDLr/8uJJQKpVilai3mUf71S5dBSI77f17yFP3vPQSCEr6l/W+RyksgcY5T0+Z1qc9VluB9ORNPTeHuRLuPzSM0Y8RaXPXcvKHdybKURWJq71CPB/oo2UocvcsJqN0HOVuMgjdlsxvrbd2OjaOR3ozVZRdaHgKps6kghWEpgf3ddEoWdPqBCdPKBy4GLEUX7TdaUjrKQvEFuNcIJMvZla6ghaPqXzIVrS/eIFD5zyBkaMaCv90lRXaX1PpjUOIb6s1ee8KANosQdAF5FR0AvvMyj/tDqAyWKad9mTNewDVR5Wrqq2bhBsjSuyKbfVNkTSJtWyHZMfxu9ezsUXm2mVmIG+zs2a++/rdY48u75OgXm448jJrl6KMHzNEd26yA6Wunut49U1972mei39rwfKFvcnXb8vFS7b3L1b3FfAMA0z+cALtU/s0LyIw4RBSBLmUJF8nENHabxPgXLrpfv5i8ASJ+Atn231k2ZBKCfZU6f/3SYXkaQXASJo1/+tfdw5B31zD06VuGIa8+lWRvzrG3Bp5PjyrwVAlS6O0ceD4wrib8HutLw37xdHsQ0j/n2HBuFi7OuuM4//vP9lCkf3MwBQdqL2GKLeqDp6uNBz8kQejh3QFumEVgexV/vKPMmuxBRXk8t+5eF6ZpdvWWdVM21jBvCQ5bRSkelSjN2VTXc3cW5T942r1hveoiSye9TGzai9BCVCuW7roVy/ccmo0H1bnfSB8Ahvod/QG+EesP5LiVmJPg23aHjBk1htOWH24u1YuNQIlal7qlUG+IccuZQfT7dxrPH9szN3n+MlWd/aPqx91V2U5VvHdU/cCbIdupSvaOqh94D+Nw/tek+hfU1U/In/8fUEsHCJ7ZrSJuCgAAdD4AAFBLAQIUABQACAAIAGRj6jye2a0ibgoAAHQ+AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAqAoAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
 +
Nimmt man statt eines Rechtecks ein Parallelogramm, so lässt sich die Umkehrung des Periphriewinkelsatzes finden:<br />
 +
Die Scheitel kongruente Winkel, deren Schenkel die Eckpunkte einer Strecke AB enthalten, liegen auf einem Kreis, der AB als Sehne hat.--[[Benutzer:Tja???|Tja???]] 09:39, 23. Jul. 2010 (UTC)
 +
 +
=Beweisführung=
 +
 +
==Satz des Thales==
 +
===Satz des Thales===
 +
Es sei k ein Kreis mit einem Durchmesser <math> \overline {AB} </math>. Jeder Peripheriewinkel von k über <math> \overline {AB} </math> ist ein rechter Winkel.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
 +
 +
Ein Versuch den Satz des Thales  mit dem EP zu beweisen:
 +
 +
<ggb_applet width="1280" height="648"  version="3.2" ggbBase64="UEsDBBQACAAIAOhL+DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VrNcts2ED43T8HhuaIJgADJGSkZWc4hM3GTqdMc2umBIiEJNUWqJGRLfqvm9y3yTF0ApP4jh5LcxokPNBfL5eL79g+M289m49S64UUp8qxjI8e1LZ7FeSKyYceeykErsJ89fdIe8nzI+0VkDfJiHMmOTRxsK/lUPH3yU7sc5bdWlGqVt4LfdmxZTLltlZOCR0k54lwa8SBKS5BH05lIRVTMX/X/4rEslwvGxotsMpW1kXicvBRlfXum3zdJhbwQNyLhhZXmccdmFDyH397yQoo4Sju25xoJ7th4YxFERK2O8kLc5ZlU6kvjA5BYVinuOACClax9pvfZ5tM4FYmIMrUZ7QcoWdatSOQIdF3sgU0uhiNwlnnMmIvzvEiu5qXkY2v2Oy9y8Mf3HewvfxA8NzdLBGHHoys/sFSCy+CLR9dXfHjoq0v61fzmiksJVJZWNONLlIeFSNZuXpTneboUTXKRyV40kdNCxwGpRFdyrt4GyBVqk91smPJKhoGnEY+v+/nsyiBHjOk384l+RDvUH/byNC+sQnFCQaG69s1V6yhPF1qu1nG1RmVDGV2soxBrDX3tm6vWSkVmXKt2jupdI7d+jSgtJQDjKnwXm0+jPod4sK1pJuTL+gbi5rraKjIP/DId9yFvViNnYROdymb7bCPm2te8yHhqAisDbqf5tLRuVASbd2lHEh6LMdyahQqSSNH1GzhgpAkfFrx23KSdAUyvuqvBuyFun9VOKB9K8DWWUD5gP1Lt5SqSd1bCS+vNCIKzVNkuIdPUjpNIgoIqHDzlYw55JnV46OhawHRpL2pKrutDXQmq9SXgsLwzVHRQRelkFIHEqfaSRnOoFqu70/Yu82R9z1EG2OkNQc5OlAHFzoTzpCqQsgppawImdYKsQK8RK60ZJKXD3LV/4NO8Y7dch0JS3xlj+hmTXKqWaD9IxbyB6B6wzn8MsBAoe6tgoRosL2gGVpyPx1GWWFk0hhf3RBGnXGMkVFOxIlcFmBUhCFQ+VM/8cfmzdf5nhdFU1kqxMVyZ22IBIl/EC5Rje73oyBHkdsbLUldGuVoDj6HKPZyob/INehfPbsCzvCgta+ZWHM5d80LrrpbMkOZGraFKdIdWSIKYKMTM6tb63VqrC723heFJTBnckcpw1wPxroTpUqUBCWP8+zszeyhN2YRAi8VAxPtj4CVsfXcEnG+xHu1nXaG44Cv67klf5pcia2c5Yo5nqhFxfErY2nqDwNkgRoxhQouF3E/Mi0xCtwNMNtiJDTsRXNT0Vu96habufprWS2T3oBLJPM2BuvTN5QQsICfw6sLGjqlrr/UON2HbhKnXBKbeQTAhbOY4ff1euglzAhIGLszWlPmeGzKNOQzJYYAp8hFxPcwC5fHhDFTdY4OD3tcKS38/FWVlrQa7/4hqC3VCfxVXotH2HAxdPITjjUcwDV0DdosRJwxIAIrYJcjzgxNVGQ12qmJiUVUgjrZH42vOJ+pM8ip7U0RZqc6zRmdl5G7EeNcw3ttiPGnGePKIGG8xx11PJU154DB/Ne1qyh0X4dBFFDEaeq4fPh7Kd4wOvbo5bfLNG4wO/DGRfe/o0CKeE0JWUxywQH2zIA8+OuhvD7uHuq4ZG7YT8ss/+xnSB+QFuqCtngdMpjUyMJ8SRAIIYswQYQgdxlD96WObI7SXo1eDQcmlPi1VQwTdySBqgH5UxMuO59WfYNI0v/2VD1I+0zh/a7bsImXREDUpl9ukvGtEyrttUkLmM+r70GQIoaQ+KhyTNoiSA0hpUTNmtLzTssLc07OyaFqale1p5cv7Rqy832QFOdSHQs8Iho7gBSELjmEFuYenSgv5mhV0WlLokamya37nWzRcNJnfL36c+R0Rx0MEAgdmRwpR5NYDPKUhhUECuwyE/lHz+7cx8LwJA89/HAag6WMGaUsIwz7yFeL1GYpgF0EDBB48FITHULCrMp2vVaaL7cr0oVFl+vCw/eKYyoSrT5zktJXpIdrF8zVSutukfGxEyseHmqxO0C48E+fs+yJl78eG7aFq0OzoOXhEpxE4TJLNjzgqi7CDyY6zJw6cMKAeRYSiAIKMnuqr5n9w+Lx/cNsxTn9qlImf7s1E8n+dcVrUMEtOfMh5iPp4ed84/bkRK5/vbVrs+GzErnfQOG3qIw5Py4rfeJ4+W/2/Z/03GtXfqDz9F1BLBwjB02r+ZAYAANUiAABQSwECFAAUAAgACADoS/g8wdNq/mQGAADVIgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAJ4GAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
 +
Vor: Dreieck ABC, A,B und C element von k, Kreis K<br />
 +
Beh: y= 90<br />
 +
 +
1) Konstruieren eine Parallele zu AB durch C  (Nach dem EP)<br />
 +
2)Der Winkel < ACE ist Kongruent zu alpha  (Wechselwinkelsatz)<br />
 +
3)Delta ist kongruent zu Betha  (Wechselwinkelsatz)<br />
 +
4)Winkel < ACM ist Kongruent zu alpha  (Basiswinkelsatz)<br />
 +
5) Winkel < MCB ist kongruent zu Betha  (Basiswinkelsatz)<br />
 +
6) <ACE+<ACM+<MCB+<BCD= 180<br />
 +
7)alpha+alpha+betha+Betha= 180  (einsetzten der Kongruenzen)<br />
 +
8) 2*(alpha+betha)= 180    (rechenen in R)<br />
 +
9) alpha+betha=90            (rechenen in R)<br />
 +
10) Y=90<br />
 +
q.e.d<br />
 +
 +
==Umkehrung 1: Satz des Thales==
 +
===Umkehrung Satz des Thales===
 +
Ist <math> \overline {ABC} </math> ein Dreieck mit einem rechten WInkel bei <math> C </math>, so liegt der Punkt <math> C </math> auf dem Thaleskreis, wobei <math> \overline {AB} </math> einen Durchmesser des Kreises <math> k </math>bildet.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)<br />
 +
Anmerkung--[[Benutzer:TimoRR|TimoRR]] 16:13, 26. Jul. 2010 (UTC): Du meinst <math>\overline{AB}</math> ist Durchmesser des Kreises <math>k</math>. !?? Jupp, Danke!--[[Benutzer:Löwenzahn|Löwenzahn]] 16:25, 26. Jul. 2010 (UTC)
 +
 +
==Umkehrung 2: Satz des Thales==
 +
===Umkehrung Satz des Thales===
 +
 +
<br />Ist ein Peripheriewinkel <math>\gamma </math> über einer Sehne <math> s </math> eines Kreises <math> k </math> ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises <math> k </math>.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC)
 +
 +
<br />Ein [[Beweise_von_Studenten#Umkehrung_des_Satz_des_Thales | Versuch eines Beweises]] besser: zwei Beweis-Ideen, eine über Winkelkonstruktion, die andere via Zentri-Peripheriewinkelsatz...
 +
<br />--[[Benutzer:Heinzvaneugen|Heinzvaneugen]] 10:29, 26. Jul. 2010 (UTC)
 +
 +
===Kommentar zu den Umkehrungen des Thalesstzes--[[Benutzer:*m.g.*|*m.g.*]] 20:43, 23. Jul. 2010 (UTC)===
 +
Es sei <math>\ \alpha</math> ein Winkel und <math>\ k</math> ein Kreis.
 +
Der Satz des Thales hat zwei Voraussetzungen:
 +
 +
# <math>\ \alpha</math> ist Peripheriewinkel von <math>\ k</math>
 +
# über einem Durchmesser von <math> \ k</math>.
 +
 +
Die Behauptung des Thalessatzes: <math>\ \alpha</math> ist ein rechter Winkel.
 +
 +
Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.
 +
 +
Satz des Thales:
 +
 +
Aus V1 und V2 folgt B.
 +
 +
Die eigentliche Umkehrung:
 +
 +
Aus B folgt V1 und V2.
 +
 +
Gemischte Umkehrung 1:
 +
 +
Aus B und V1 folgt V2.
 +
 +
Gemischte Umkehrung 2:
 +
 +
Aus B und V2 folgt V1.
 +
 +
<br /><br />Also fehlt uns noch die
 +
 +
==== Eigentliche Umkehrung des Satz von Thales ====
 +
Mein Vorschlag: <br />Es sei ein Dreieck <math> \overline {ABC} </math> mit den schulüblichen Bezeichnungen. Ist <math>\ \gamma</math> ein rechter Winkel, so ist <math> \ c</math>  identisch mit einem Durchmesser des Umkreises des Dreiecks.
 +
<br />--[[Benutzer:Barbarossa|Barbarossa]] 08:38, 25. Jul. 2010 (UTC)

Aktuelle Version vom 26. Juli 2010, 17:25 Uhr

Inhaltsverzeichnis

Ein wenig Didaktik

Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales

Satzfindung

Induktive Satzfindung

--Gubbel 12:10, 21. Jul. 2010 (UTC)

Funktionale Betrachtung

Variante 1

--"chris"07 21:47, 15. Jul. 2010 (UTC)


Variante 2

--"chris"07 21:12, 14. Jul. 2010 (UTC)


Variante 3

--"chris"07 21:12, 14. Jul. 2010 (UTC)

Beweisfindung

ikonisches/halbikonisches Beweisen

--"chris"07 17:07, 15. Jul. 2010 (UTC)

Beweisen am Beispiel

induktive Satzfindung der allgemeinen Umkehrung

Nimmt man statt eines Rechtecks ein Parallelogramm, so lässt sich die Umkehrung des Periphriewinkelsatzes finden:
Die Scheitel kongruente Winkel, deren Schenkel die Eckpunkte einer Strecke AB enthalten, liegen auf einem Kreis, der AB als Sehne hat.--Tja??? 09:39, 23. Jul. 2010 (UTC)

Beweisführung

Satz des Thales

Satz des Thales

Es sei k ein Kreis mit einem Durchmesser  \overline {AB} . Jeder Peripheriewinkel von k über  \overline {AB} ist ein rechter Winkel.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)

Ein Versuch den Satz des Thales mit dem EP zu beweisen:

Vor: Dreieck ABC, A,B und C element von k, Kreis K
Beh: y= 90

1) Konstruieren eine Parallele zu AB durch C (Nach dem EP)
2)Der Winkel < ACE ist Kongruent zu alpha (Wechselwinkelsatz)
3)Delta ist kongruent zu Betha (Wechselwinkelsatz)
4)Winkel < ACM ist Kongruent zu alpha (Basiswinkelsatz)
5) Winkel < MCB ist kongruent zu Betha (Basiswinkelsatz)
6) <ACE+<ACM+<MCB+<BCD= 180
7)alpha+alpha+betha+Betha= 180 (einsetzten der Kongruenzen)
8) 2*(alpha+betha)= 180 (rechenen in R)
9) alpha+betha=90 (rechenen in R)
10) Y=90
q.e.d

Umkehrung 1: Satz des Thales

Umkehrung Satz des Thales

Ist  \overline {ABC} ein Dreieck mit einem rechten WInkel bei  C , so liegt der Punkt  C auf dem Thaleskreis, wobei  \overline {AB} einen Durchmesser des Kreises  k bildet.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)
Anmerkung--TimoRR 16:13, 26. Jul. 2010 (UTC): Du meinst \overline{AB} ist Durchmesser des Kreises k. !?? Jupp, Danke!--Löwenzahn 16:25, 26. Jul. 2010 (UTC)

Umkehrung 2: Satz des Thales

Umkehrung Satz des Thales


Ist ein Peripheriewinkel \gamma über einer Sehne  s eines Kreises  k ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises  k .--Löwenzahn 15:07, 23. Jul. 2010 (UTC)


Ein Versuch eines Beweises besser: zwei Beweis-Ideen, eine über Winkelkonstruktion, die andere via Zentri-Peripheriewinkelsatz...
--Heinzvaneugen 10:29, 26. Jul. 2010 (UTC)

Kommentar zu den Umkehrungen des Thalesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC)

Es sei \ \alpha ein Winkel und \ k ein Kreis. Der Satz des Thales hat zwei Voraussetzungen:

  1. \ \alpha ist Peripheriewinkel von \ k
  2. über einem Durchmesser von  \ k.

Die Behauptung des Thalessatzes: \ \alpha ist ein rechter Winkel.

Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.

Satz des Thales:

Aus V1 und V2 folgt B.

Die eigentliche Umkehrung:

Aus B folgt V1 und V2.

Gemischte Umkehrung 1:

Aus B und V1 folgt V2.

Gemischte Umkehrung 2:

Aus B und V2 folgt V1.



Also fehlt uns noch die

Eigentliche Umkehrung des Satz von Thales

Mein Vorschlag:
Es sei ein Dreieck  \overline {ABC} mit den schulüblichen Bezeichnungen. Ist \ \gamma ein rechter Winkel, so ist  \ c identisch mit einem Durchmesser des Umkreises des Dreiecks.
--Barbarossa 08:38, 25. Jul. 2010 (UTC)