Lösung von Aufgabe 5.5 (WS 11/12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Es seien eine Ebene E (aufgefasst als Punktmenge) und eine Gerade g in E gegeben. Wir betrachten folgende Relation <math>\ \Theta</math> (<math>\ \Theta</math> is…“)
 
 
(9 dazwischenliegende Versionen von 6 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
  
  
[[Category:Einführung_Geometrie]]
+
[[Category:Einführung_Geometrie]]<br />
 +
 
 +
 
 +
zu a) Punkt A steht genau dann in Relation zu Punkt B, wenn die Strecke <math>\overline{AB</math> keinen Schnittpunkt mit g hat. --[[Benutzer:Wookie|Wookie]] 12:18, 14. Nov. 2011 (CET)<br />
 +
zu b) begründest du mit der Parallelität? Warum? Steht doch nichts, davon in der Relation?--Anna S 22:13, 14. Nov. 2011 (CET)
 +
<br />@ Anna S: Du hast recht, das war wohl ein Denkfehler. Die Relation beschreibt nicht Parallelität, sondern, "Element der selben Gerade wie". --[[Benutzer:Todah raba|Todah raba]] 09:25, 15. Nov. 2011 (CET)<br />
 +
@ Todah raba: Was meinst du mit "Element der selben Gerade wie" ? Gibt es durch zwei Punkte nicht immer ein Gerade? <br />
 +
Weitere Vorschläge zur Interpretation der Relation ...--[[Benutzer:Tutorin Anne|Tutorin Anne]] 19:33, 16. Nov. 2011 (CET)
 +
 
 +
Ein Punkt steht genau dann in Relation mit einem anderen Punkt, wenn er mit dem anderen Punkt auf der gleichen Halbebene liegt, wenn die Gerade g die Ebene in zwei Halbebenen teilt.<br />
 +
Ist reflexiv, da jeder Punkt auf der gleichen Halbebene liegt wie er selbst.<br />
 +
Ist symetrisch, da wenn A auf der einen Halbebene liegt und B auf der gleichen Halbebene liegt, dann liegt auch B auf der gleichen Halbebene wie A.<br />
 +
Ist transistiv, da wenn A und B auf der selben Halbebene liegen wie B und C, so liegen auch die Punke A und C auf der gleichen Halbebene--[[Benutzer:RicRic|RicRic]] 22:43, 16. Nov. 2011 (CET)<br />
 +
 
 +
 
 +
==== Nicht korrekt====
 +
Vielleicht haben einige auch so gedacht und deshalb soll es hier mal stehen bleiben. --[[Benutzer:Andreas|Tutor Andreas]] 14:05, 19. Nov. 2011 (CET)<br />
 +
a)<s>parallel</s> --[[Benutzer:Todah raba|Todah raba]] 09:25, 15. Nov. 2011 (CET)<br />
 +
b) Die Relation hat folgende Eigenschaften:
 +
<math>\ \Theta</math> ist reflexiv: <math>\overline{AB} || \overline{AB}</math> <br />
 +
<math>\ \Theta</math> ist symmetrisch: <math>\overline{AB} || g \Rightarrow g || \overline{AB}</math><br />
 +
<math>\ \Theta</math> ist transitiv: <math>\overline{AB} ||  g \ \wedge  g || h  \Rightarrow \overline{AB}  || h</math><br />
 +
Also ist es eine Äquivalenzrelation. --[[Benutzer:Todah raba|Todah raba]] 17:02, 13. Nov. 2011 (CET)<br />
 +
* Es wäre gut, wenn der Autor diesen Kommentar verbessern würde. --[[Benutzer:Andreas|Tutor Andreas]] 11:18, 17. Nov. 2011 (CET)
 +
* Ich stimme der Lösung von RicRic zu, ich hatte bei meiner Lösung eine falsche Interpretation der Relation angenommen. <br />
 +
Soll ich den Beitrag löschen? <br />--[[Benutzer:Todah raba|Todah raba]] 16:47, 17. Nov. 2011 (CET)<br />
 +
* Wenn du ihn nicht verbessern willst und erkannt hast, dass es so nicht stimmt, dann sollte man ihn zumindest als
 +
"nicht korrekt" markieren.

Aktuelle Version vom 19. November 2011, 14:05 Uhr

Es seien eine Ebene E (aufgefasst als Punktmenge) und eine Gerade g in E gegeben. Wir betrachten folgende Relation \ \Theta (\ \Theta ist ein willkürlich gewähltes Symbol, um die Relation nicht mit dem unauffälligen Buchstaben R bezeichnen zu müssen) in der Menge \ E \setminus g (also alle Punkte der Ebene E, die nicht der Geraden g angehören): Für beliebige \ A,B \in E \setminus g gilt: \ A  \Theta B: \Leftrightarrow \overline{AB}\cap g = \lbrace \rbrace.
a) Beschreiben Sie die Relation \ \Theta verbal und veranschaulichen Sie diese Relation.
b) Begründen Sie anschaulich, dass \ \Theta eine Äquivalenzrelation ist. Formulieren Sie dazu die Eigenschaften von Äquivalenzrelationen konkret auf die Relation \ \Theta bezogen.
Hinweis: Sie können die Transitivität noch nicht exakt beweisen; in dieser Aufgabe geht es zunächst darum, die Relationseigenschaften als geometrische Eigenschaften zu interpretieren und zu verstehen.


zu a) Punkt A steht genau dann in Relation zu Punkt B, wenn die Strecke Fehler beim Parsen(Syntaxfehler): \overline{AB

keinen Schnittpunkt mit g hat. --Wookie 12:18, 14. Nov. 2011 (CET)

zu b) begründest du mit der Parallelität? Warum? Steht doch nichts, davon in der Relation?--Anna S 22:13, 14. Nov. 2011 (CET)
@ Anna S: Du hast recht, das war wohl ein Denkfehler. Die Relation beschreibt nicht Parallelität, sondern, "Element der selben Gerade wie". --Todah raba 09:25, 15. Nov. 2011 (CET)
@ Todah raba: Was meinst du mit "Element der selben Gerade wie" ? Gibt es durch zwei Punkte nicht immer ein Gerade?
Weitere Vorschläge zur Interpretation der Relation ...--Tutorin Anne 19:33, 16. Nov. 2011 (CET)

Ein Punkt steht genau dann in Relation mit einem anderen Punkt, wenn er mit dem anderen Punkt auf der gleichen Halbebene liegt, wenn die Gerade g die Ebene in zwei Halbebenen teilt.
Ist reflexiv, da jeder Punkt auf der gleichen Halbebene liegt wie er selbst.
Ist symetrisch, da wenn A auf der einen Halbebene liegt und B auf der gleichen Halbebene liegt, dann liegt auch B auf der gleichen Halbebene wie A.
Ist transistiv, da wenn A und B auf der selben Halbebene liegen wie B und C, so liegen auch die Punke A und C auf der gleichen Halbebene--RicRic 22:43, 16. Nov. 2011 (CET)


Nicht korrekt

Vielleicht haben einige auch so gedacht und deshalb soll es hier mal stehen bleiben. --Tutor Andreas 14:05, 19. Nov. 2011 (CET)

a)parallel --Todah raba 09:25, 15. Nov. 2011 (CET)
b) Die Relation hat folgende Eigenschaften: \ \Theta ist reflexiv: \overline{AB} || \overline{AB}
\ \Theta ist symmetrisch: \overline{AB} || g \Rightarrow g || \overline{AB}
\ \Theta ist transitiv: \overline{AB} ||  g \ \wedge  g || h  \Rightarrow \overline{AB}  || h
Also ist es eine Äquivalenzrelation. --Todah raba 17:02, 13. Nov. 2011 (CET)
* Es wäre gut, wenn der Autor diesen Kommentar verbessern würde. --Tutor Andreas 11:18, 17. Nov. 2011 (CET) * Ich stimme der Lösung von RicRic zu, ich hatte bei meiner Lösung eine falsche Interpretation der Relation angenommen.
Soll ich den Beitrag löschen?
--Todah raba 16:47, 17. Nov. 2011 (CET)
* Wenn du ihn nicht verbessern willst und erkannt hast, dass es so nicht stimmt, dann sollte man ihn zumindest als "nicht korrekt" markieren.