Lösung von Aufg. 13.2 (WS 11/12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Adores (Diskussion | Beiträge) (table+ table+ table+) |
|||
Zeile 36: | Zeile 36: | ||
--[[Benutzer:Adores|Adores]] 01:36, 24. Jan. 2012 (CET) | --[[Benutzer:Adores|Adores]] 01:36, 24. Jan. 2012 (CET) | ||
− | + | Gut! Allerdings würde eine Skizze das Nachvollziehen wesentlich vereinfachen! <br />So ist mir allerdings aufgefallen, dass Schritt (6) nicht immer geht, da die Winkel <math>\angle APL</math> und <math>\angle RLP</math> nicht immer Wechselwinkel sind! Stimmt's?<br /> Das lässt sich durch eine Skizze einfach darstellen!--[[Benutzer:Tutorin Anne|Tutorin Anne]] 13:13, 25. Jan. 2012 (CET) | |
[[Category:Einführung_Geometrie]] | [[Category:Einführung_Geometrie]] |
Version vom 25. Januar 2012, 13:13 Uhr
Beweisen Sie: Wenn ein Punkt außerhalb der Geraden ist, dann gibt es eine Gerade , die durch geht und parellel zu ist.
Kann man, um diese Implikation zu beweisen, das Parallelnaxiom verwenden?
- Mann kann es in der absoluten Geometrie beweisen. D.h. ohne Parallelaxiom. --RicRic 07:53, 23. Jan. 2012 (CET
Vor: P, g, P g
Beh: P h
Beweisschritt | Begründung |
---|---|
1) R, L : R,L g | Axiom I.2 |
2) l: P, L l = {L} | Ex. und Eind. Lot, (1) |
3) Q: Q gP+ | Definition Halbebene |
4) PA+: = 90 PA+ Teilmenge von lQ+ | Axiom IV.2, (2), (3) |
5) | (2), (4) |
6) | (5), Umkehrung Wechselwinkelsatz |
q.e.d. |
--Adores 01:36, 24. Jan. 2012 (CET)
Gut! Allerdings würde eine Skizze das Nachvollziehen wesentlich vereinfachen!
So ist mir allerdings aufgefallen, dass Schritt (6) nicht immer geht, da die Winkel und nicht immer Wechselwinkel sind! Stimmt's?
Das lässt sich durch eine Skizze einfach darstellen!--Tutorin Anne 13:13, 25. Jan. 2012 (CET)