Drehungen 2010: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Konstruktionsbeschreibung)
(Konstruktionsbeschreibung für Konstruktion nur mit Zirkel und Lineal)
Zeile 37: Zeile 37:
  
 
==Konstruktionsbeschreibung für Konstruktion nur mit Zirkel und Lineal==
 
==Konstruktionsbeschreibung für Konstruktion nur mit Zirkel und Lineal==
 +
 +
1) Wir zeichnen mit dem Zirkel einen Kreis k<sub>1</sub> um Z, der durch P geht.<br />
 +
2) Mit demselben Radius zeichnen wir nun einen Kreis um S.<br />
 +
3) Die Schnittpunkte mit den Schenkeln p un q bezeichnen wir mit R und Q.<br />
 +
4) Wir nimm die Strecke RQ in die Zirkelspanne,<br />
 +
5) zeichne mit der Strecke RQ als Radius einen zweiten Kreis k<sub>2</sub> um Z.<br />
 +
6) Die Schnittpunkte der beiden Kreise k<sub>1</sub> und k<sub>2</sub> benennen wir mit S<sub>1</sub> und S<sub>2</sub>.<br />
 +
7) Da der Winkel α mathematisch positiv gerichtet ist, muss auch der Drehwinkel der Abbildung positiv gerichtet sein.<br />
 +
8) Wir zeichnen die Strahlen ZP<sup>+</sup> und ZS<sub>2</sub><sup>+</sup>.<br />
 +
9) S<sub>2</sub> ist P', der Bildpunkt von P.<br />
  
 
== Definition des Begriffs der Drehung um einen Punkt <math>\ Z</math> mit dem Drehwinkel <math>\ \alpha</math> ==
 
== Definition des Begriffs der Drehung um einen Punkt <math>\ Z</math> mit dem Drehwinkel <math>\ \alpha</math> ==

Version vom 11. November 2010, 13:34 Uhr

Inhaltsverzeichnis

Konstruktion des Bildes eines Punktes P bei einer Drehung um Z mit dem Drehwinkel \alpha

Konstruktionsbeschreibung

Es seien \ Z und \ P zwei Punkte der Ebene. Ferner sei \ \alpha ein gerichteter Winkel.

Das Bild von \ P bei einer Drehung um \ Z wird wie folgt konstruiert:

Fall 1: \ P \equiv  Z ,dann  \ P \equiv P'


Fall 2: \ P \not\equiv Z, dann


Konstruktion des Bildes eines Punktes \ P bei einer Drehung um \ Z mit dem Drehwinkel \ \alpha im Falle \ P \not\equiv Z
Schrittnr. Konstruktionsschritt Begründung der Korrektheit des Konstruktionsschrittes
(I) Konstruktion des Strahls ZQ+ an den Strahl ZP+ mit dem Winkel \ \alpha so an, dass die positive Orientierung von \alpha für <PZP’erhalten bleibt. Winkelkonstruktionsaxiom
(II) Trage die Strecke\overline{ZP} auf ZQ+ an Z ab und nenne den Punkt P’ab. Axiom vom Lineal--Tja??? 10:56, 11. Nov. 2010 (UTC)
(III) ... ...

Konstruktionsbeschreibung für Konstruktion nur mit Zirkel und Lineal

1) Wir zeichnen mit dem Zirkel einen Kreis k1 um Z, der durch P geht.
2) Mit demselben Radius zeichnen wir nun einen Kreis um S.
3) Die Schnittpunkte mit den Schenkeln p un q bezeichnen wir mit R und Q.
4) Wir nimm die Strecke RQ in die Zirkelspanne,
5) zeichne mit der Strecke RQ als Radius einen zweiten Kreis k2 um Z.
6) Die Schnittpunkte der beiden Kreise k1 und k2 benennen wir mit S1 und S2.
7) Da der Winkel α mathematisch positiv gerichtet ist, muss auch der Drehwinkel der Abbildung positiv gerichtet sein.
8) Wir zeichnen die Strahlen ZP+ und ZS2+.
9) S2 ist P', der Bildpunkt von P.

Definition des Begriffs der Drehung um einen Punkt \ Z mit dem Drehwinkel \ \alpha

Definition 5.1: (Drehung um einen Punkt \ Z mit dem Drehwinkel \ \alpha

Es sei \ Z ein Punkt der Ebene und \ \alpha ein gerichteter Winkel. Unter der Drehung um \ Z mit dem Drehwinkel \ \alpha versteht man eine Abbildung der Ebene auf sich für die folgendes gilt:
  1. ...
  2. ...

Definition verstanden?




1. Welche der folgenden Aussagen sind wahr?

(a) Der Punkt \ A wird bei der Drehung um \ Z mit dem Drehwinkel \ \alpha = 45^\circ auf den Punkt \ B abgebildet.
(b) Es gibt eine Drehung für die gleichzeitig gilt: Das Bild von \ B ist \ E, das Bild von \ E ist \ H, das Bild von \ H ist \ K, ..., das Bild von \ W ist \ B_1
(c) (b) ist äquivalent zu: Es gibt einen Kreis auf dem die Punkte \ B, E, H, K, U, Q, R, W, B_1 liegen.
(d) Der Punkt \ A wird bei der Drehung um \ Z mit dem Drehwinkel \ \alpha = 40^\circ auf den Punkt \ D abgebildet.
(e) Die Winkelhalbierenden der Winkel bei der obigen Darstellung, deren Scheitelpunkte alle auf ein und demselben Kreis liegen, sind parallel zueinander.
(f) Das Dreieck QPR wird bei einer Drehung um \ Z mit dem Drehwinkel \ \alpha = 50^\circ auf das Dreieck TSU abgebildet.
(g) Die Mittelsenlkrechten der Strecken AD, DG, GJ, JM,... schneiden sich im Punkt Z
(h) Es gibt eine Drehung für die gleichzeitig gilt: Das Bild von \ L ist \ O, das Bild von \ O ist \ R, das Bild von \ R ist \ U, ..., das Bild von \ F ist \ I

Punkte: 0 / 0