Lösung von Aufg. 6.5 (WS 11/12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
  
 
* Zu je drei paarweise verschiedenen Punkten gibt es genau eine Ebene zu der die drei Punke gehören. --[[Benutzer:RicRic|RicRic]] 23:13, 16. Nov. 2011 (CET)
 
* Zu je drei paarweise verschiedenen Punkten gibt es genau eine Ebene zu der die drei Punke gehören. --[[Benutzer:RicRic|RicRic]] 23:13, 16. Nov. 2011 (CET)
* Die drei Punkte dürfen aber zudem nicht kollinear sein, da 2 Geraden eine Ebene aufspannen. Lägen die drei Punkte auf einer Geraden, könnten wir demnach keine Ebene  
+
* Die drei Punkte dürfen aber zudem nicht kollinear sein, da 2 Geraden eine Ebene aufspannen. Lägen die drei Punkte auf einer Geraden, könnten wir demnach keine Ebene aufspannen. Vielleicht könnte man deshalb auch als analoges Axiom formulieren: Zu je zwei verschiedenen Geraden gibt es genau eine Ebene, zu der diese beiden Geraden gehören. --[[Benutzer:Miriam|Miriam]] 13:01, 19. Nov. 2011 (CET)<br />
aufspannen. Vielleicht könnte man deshalb auch als analoges Axiom formulieren: Zu je zwei verschiedenen Geraden gibt es genau eine Ebene, zu der diese beiden Geraden
+
** Gibt es zu zwei windschiefen Geraden genau eine Ebene? --[[Benutzer:Andreas|Tutor Andreas]] 15:07, 19. Nov. 2011 (CET)
gehören. --[[Benutzer:Miriam|Miriam]] 13:01, 19. Nov. 2011 (CET)<br />
+
* Wie könnte man das Axiom formulieren, wenn man RicRics Idee weiterführt und Miriams Einwand berücksichtigt?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 16:04, 21. Nov. 2011 (CET)
* Gibt es zu zwei windschiefen Geraden genau eine Ebene? --[[Benutzer:Andreas|Tutor Andreas]] 15:07, 19. Nov. 2011 (CET)
+
 
+
 
[[Category:Einführung_Geometrie]]
 
[[Category:Einführung_Geometrie]]

Version vom 21. November 2011, 16:04 Uhr

Axiom I/1 sagte aus, dass es zu je zwei verschiedenen Punkten genau eine Gerade gibt, zu der die beiden Punkte gehören. Für die räumliche Geometrie gibt es ein analoges Axiom. Wir wollen es mit Axiom I/4 bezeichnen. Formulieren Sie dieses Axiom I/4.

  • Zu je drei paarweise verschiedenen Punkten gibt es genau eine Ebene zu der die drei Punke gehören. --RicRic 23:13, 16. Nov. 2011 (CET)
  • Die drei Punkte dürfen aber zudem nicht kollinear sein, da 2 Geraden eine Ebene aufspannen. Lägen die drei Punkte auf einer Geraden, könnten wir demnach keine Ebene aufspannen. Vielleicht könnte man deshalb auch als analoges Axiom formulieren: Zu je zwei verschiedenen Geraden gibt es genau eine Ebene, zu der diese beiden Geraden gehören. --Miriam 13:01, 19. Nov. 2011 (CET)
    • Gibt es zu zwei windschiefen Geraden genau eine Ebene? --Tutor Andreas 15:07, 19. Nov. 2011 (CET)
  • Wie könnte man das Axiom formulieren, wenn man RicRics Idee weiterführt und Miriams Einwand berücksichtigt?--Tutorin Anne 16:04, 21. Nov. 2011 (CET)