Lösung von Aufgabe 11.5P (SoSe 12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „Das Dreieck <math>\overline{ABC}</math> wird an Punkt ''D'' um 90 gedreht. Das gedrehte Dreieck wird nun um den eingezeichneten Vektor verschoben. Gibt es einen P…“) |
|||
Zeile 1: | Zeile 1: | ||
Das Dreieck <math>\overline{ABC}</math> wird an Punkt ''D'' um 90 gedreht. Das gedrehte Dreieck wird nun um den eingezeichneten Vektor verschoben. Gibt es einen Punkt der Ebene, der nun genau wieder an seinem ursprünglichen Ort liegt? Konstruieren Sie ggf. diesen Punkt und begründen Sie!<br /> | Das Dreieck <math>\overline{ABC}</math> wird an Punkt ''D'' um 90 gedreht. Das gedrehte Dreieck wird nun um den eingezeichneten Vektor verschoben. Gibt es einen Punkt der Ebene, der nun genau wieder an seinem ursprünglichen Ort liegt? Konstruieren Sie ggf. diesen Punkt und begründen Sie!<br /> | ||
− | <ggb_applet width="624" height="445" version="4.0" ggbBase64="UEsDBBQACAAIACNe4UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIACNe4UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vrdcts2Fr5OnwLDi150IgogSFDMSulEajqbmbTJrLOdnd5BJCyhpgiWpGS504faZ9gn2wOApEhZ/o2tKPFYBkEc4uB855/W+MftKkUbUZRSZROHuNhBIotVIrPFxFlX54OR8+Pr78YLoRZiXnB0rooVryaOryllMnGimMbzkUgG0ZzhgY+pGMwpXDEcJOdRiMMIhw5C21K+ytSvfCXKnMfiLF6KFX+vYl4Zxsuqyl8Nh5eXl27DylXFYrhYzN1tmTgIjpmVE6e+eAXb9R66pIbcw5gM//PLe7v9QGZlxbNYOEiLsJavv3sxvpRZoi7RpUyq5cRh1HPQUsjFEmQK9EmHmigHQHIRV3IjSni0MzUyV6vcMWQ80+sv7BVKW3EclMiNTEQxcbBLCfODgEXMw14AE2CiCimyqiYmNdNhs914I8Wl3VdfGZa+gyql0jnXW6K//0awGUYv9UDs4MHAmF3C9h6mdvDs4NshsDS+fdy3pL6l8S2NTx20kaWcp2LinPO0BAhldl6A+tp5WV2lwpynvrETn7wEmUr5FxBTDHZiMYf7GL/UHwYfXy8M+0KSDteqWD+QacOSef79WXo3s7TTWzjShqPXFZIxED+gL73gBiHZLdjeybOVkgQdnsDK/JrPNY7UewBHO/88hsw/iojjYeMo49o3ULnUtLUiK7EqtbfQCAWRNnqCAvAMFoKNB4hEMIQeAl9AJEB+AFMyQkyPIaIhLPiIohHSdIQi4xrBCP74odmMoQA203dD8EhEgJGPAoqI8SgfgR8h45XgoR4FiiBAATyk2RNPb0EZ8hnM6Aj5cEbtkCEBQgoPwhzYe4gSRPXDJEQeQ0zvR3zt6Gykjw5beohhxIjeEHwa/Nn6MtCPENXSsBoumeXrqgdRvEqay0rlrS6AGqLRLujZ6NSLiS/GKZ+LFNLEmdYkQhueao8wjM5VVqFGiZ69tyh4vpRxeSaqCp4q0R98w9/zSmx/Buqy4W1oY5WVHwtVzVS6XmUlQrFKcXtmlZLOtdeeGia0s+B3F4LOAutchwf5KlhB61IAf1WUDTlPkneaYheMAMkPWXo1LQS/yJXsizEemowzFus4lYnk2W9grJqLxgW1CUgHqyYBUd9vDqKK5OyqBAtG299FoSDGkECn3Cs7o3ZWxly7WIDNUndmthGbFm2+FbuDLwrZ6l1fvyunKk3aZSPKjOfVujBlAMS5Qh/wTbZIhVG3iZuQY+OLudqeWT1Tu9enqxxm9QHmCwMhAjf3ggAI6nFuR0OjT9ZSYUODDQVuDEcm7TqJPENhxrkdDRVYoj1aLSlppCS4YSNLE5ywU7tAE3i0HeuUvc5k9b6ZVDK+qEUl9oFf16u5aK2hvyd5qj3Hwz1zGV+IIhNpbZ2gy7Val9bZOoabiFiuYGoXaki4Vte/4QD2biIWhWgOnpoSywJmVnHX8K7dNlv9XKjVu2zzCWxh7wDjYXPKcRkXMtcmh+YQ0S/EzqoSWXJICEn3Oe1OIHqsAz/AU2lowNHW1VIVpoqC+ACj9qJUrKBkQpUxL2OhLcxvTDGm8URq/geEqDaL2fWdwmD5oKkZo+RpvuS6YKuFTvmVKHowmP1+Uck+OIC9kQD8Nbe6zYWwZmHPCxc5bGe8qRdvAO0SbSfOwDMeXNfVf9lK3JaiWlTtYr0Ia+/u6QmMx6J0B17To+L14fy8FJUWkhgJSfjcYGKXHQ3L2RfFMnh2u4T2ZWTV5vpPAmasViueJSgzxeBHlV4tVObsyhOOtUMjTrSdIu5piC1+66pZh9CYQu4hliy2ZBwGyP9zy7Bmc0B7lmGjn3arfhKpoFS5gG6sNJmuqnOaufinTBJhytTh7arvANrVPfQGRvsBqbPcTvnkIYHnZgstxULP2oPEd9joww/6wAjZdU0b5jztomBNA4Jdfz+D3x988WdmHyltWpWrPJWxrFqLSbVtv8sqSLLCZJnrufNCiFwXLR+yTwXPSv2Cw9J0cvI9geanA7RXx0Bw4GhkoPZcyr4ZpOeng/SghZq4zKtjpBdG3Z/RVwt8P9v99IWyXWBT0POXYdj1DCvqhqNnSHf/UhVUtIezXYR/+N9/bSr76VrGe/M9z1X5j7tyW68qrh95lKM8WXHcw9b3cPeH1oVFtO8sRwJ+eg/gpw8HfnrywJOgro+Do2E9uwfWs4djPTsxrD2X9I05rMNJ0LsbsePV0jVCtqJuJ14P7oPVdffBuPsgbye63r6f0g5X3R3tHaX27mkc+0covZ/MPh9/2v1ipRcKcJ1aXcYCSv2AsoiGIfVHbwekKdFdHHXjB/mGCvYTU48u1nva8etu6WD4GBBoyiP27ahjfmLqAK8gfeBtod90r4E78kZfL/z9VPr2CyfRp6jfSft64Wne/PUT7G8Aiir2C5tumnx7LZmub0+MG7tlg/H683XwND0tOVzHwP2DkWjH6hFe0PmfQ+0HMS8qUUqe1Wm+gvlHrSsktvlenXiTsow3pAe6ra6+1jc1Wo9ut06sHtXvJIzm9Hvcfg/wDA5yE+bT2zGfPhbz6alivuckUR2Urif3o6lgdrsKZo9VwewkVfC8eeDWRutAu3Wg6bpX63WgATvQhh1oxj6/JTt2Y9Z8O+B6Dnvexuxz7PaJznyf9sxzPf3dPIb9yAswJXTXnfku+XZe6/OT1MoDuzLmkq/3ff8NLdmJaeSuxozqN5tfjwqG3e/BmG+O1d+Bfv1/UEsHCOse+Mv1BwAAoC0AAFBLAQIUABQACAAIACNe4UDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAI17hQOse+Mv1BwAAoC0AAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACMCAAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /> | + | <ggb_applet width="624" height="445" version="4.0" ggbBase64="UEsDBBQACAAIACNe4UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIACNe4UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vrdcts2Fr5OnwLDi150IgogSFDMSulEajqbmbTJrLOdnd5BJCyhpgiWpGS504faZ9gn2wOApEhZ/o2tKPFYBkEc4uB855/W+MftKkUbUZRSZROHuNhBIotVIrPFxFlX54OR8+Pr78YLoRZiXnB0rooVryaOryllMnGimMbzkUgG0ZzhgY+pGMwpXDEcJOdRiMMIhw5C21K+ytSvfCXKnMfiLF6KFX+vYl4Zxsuqyl8Nh5eXl27DylXFYrhYzN1tmTgIjpmVE6e+eAXb9R66pIbcw5gM//PLe7v9QGZlxbNYOEiLsJavv3sxvpRZoi7RpUyq5cRh1HPQUsjFEmQK9EmHmigHQHIRV3IjSni0MzUyV6vcMWQ80+sv7BVKW3EclMiNTEQxcbBLCfODgEXMw14AE2CiCimyqiYmNdNhs914I8Wl3VdfGZa+gyql0jnXW6K//0awGUYv9UDs4MHAmF3C9h6mdvDs4NshsDS+fdy3pL6l8S2NTx20kaWcp2LinPO0BAhldl6A+tp5WV2lwpynvrETn7wEmUr5FxBTDHZiMYf7GL/UHwYfXy8M+0KSDteqWD+QacOSef79WXo3s7TTWzjShqPXFZIxED+gL73gBiHZLdjeybOVkgQdnsDK/JrPNY7UewBHO/88hsw/iojjYeMo49o3ULnUtLUiK7EqtbfQCAWRNnqCAvAMFoKNB4hEMIQeAl9AJEB+AFMyQkyPIaIhLPiIohHSdIQi4xrBCP74odmMoQA203dD8EhEgJGPAoqI8SgfgR8h45XgoR4FiiBAATyk2RNPb0EZ8hnM6Aj5cEbtkCEBQgoPwhzYe4gSRPXDJEQeQ0zvR3zt6Gykjw5beohhxIjeEHwa/Nn6MtCPENXSsBoumeXrqgdRvEqay0rlrS6AGqLRLujZ6NSLiS/GKZ+LFNLEmdYkQhueao8wjM5VVqFGiZ69tyh4vpRxeSaqCp4q0R98w9/zSmx/Buqy4W1oY5WVHwtVzVS6XmUlQrFKcXtmlZLOtdeeGia0s+B3F4LOAutchwf5KlhB61IAf1WUDTlPkneaYheMAMkPWXo1LQS/yJXsizEemowzFus4lYnk2W9grJqLxgW1CUgHqyYBUd9vDqKK5OyqBAtG299FoSDGkECn3Cs7o3ZWxly7WIDNUndmthGbFm2+FbuDLwrZ6l1fvyunKk3aZSPKjOfVujBlAMS5Qh/wTbZIhVG3iZuQY+OLudqeWT1Tu9enqxxm9QHmCwMhAjf3ggAI6nFuR0OjT9ZSYUODDQVuDEcm7TqJPENhxrkdDRVYoj1aLSlppCS4YSNLE5ywU7tAE3i0HeuUvc5k9b6ZVDK+qEUl9oFf16u5aK2hvyd5qj3Hwz1zGV+IIhNpbZ2gy7Val9bZOoabiFiuYGoXaki4Vte/4QD2biIWhWgOnpoSywJmVnHX8K7dNlv9XKjVu2zzCWxh7wDjYXPKcRkXMtcmh+YQ0S/EzqoSWXJICEn3Oe1OIHqsAz/AU2lowNHW1VIVpoqC+ACj9qJUrKBkQpUxL2OhLcxvTDGm8URq/geEqDaL2fWdwmD5oKkZo+RpvuS6YKuFTvmVKHowmP1+Uck+OIC9kQD8Nbe6zYWwZmHPCxc5bGe8qRdvAO0SbSfOwDMeXNfVf9lK3JaiWlTtYr0Ia+/u6QmMx6J0B17To+L14fy8FJUWkhgJSfjcYGKXHQ3L2RfFMnh2u4T2ZWTV5vpPAmasViueJSgzxeBHlV4tVObsyhOOtUMjTrSdIu5piC1+66pZh9CYQu4hliy2ZBwGyP9zy7Bmc0B7lmGjn3arfhKpoFS5gG6sNJmuqnOaufinTBJhytTh7arvANrVPfQGRvsBqbPcTvnkIYHnZgstxULP2oPEd9joww/6wAjZdU0b5jztomBNA4Jdfz+D3x988WdmHyltWpWrPJWxrFqLSbVtv8sqSLLCZJnrufNCiFwXLR+yTwXPSv2Cw9J0cvI9geanA7RXx0Bw4GhkoPZcyr4ZpOeng/SghZq4zKtjpBdG3Z/RVwt8P9v99IWyXWBT0POXYdj1DCvqhqNnSHf/UhVUtIezXYR/+N9/bSr76VrGe/M9z1X5j7tyW68qrh95lKM8WXHcw9b3cPeH1oVFtO8sRwJ+eg/gpw8HfnrywJOgro+Do2E9uwfWs4djPTsxrD2X9I05rMNJ0LsbsePV0jVCtqJuJ14P7oPVdffBuPsgbye63r6f0g5X3R3tHaX27mkc+0covZ/MPh9/2v1ipRcKcJ1aXcYCSv2AsoiGIfVHbwekKdFdHHXjB/mGCvYTU48u1nva8etu6WD4GBBoyiP27ahjfmLqAK8gfeBtod90r4E78kZfL/z9VPr2CyfRp6jfSft64Wne/PUT7G8Aiir2C5tumnx7LZmub0+MG7tlg/H683XwND0tOVzHwP2DkWjH6hFe0PmfQ+0HMS8qUUqe1Wm+gvlHrSsktvlenXiTsow3pAe6ra6+1jc1Wo9ut06sHtXvJIzm9Hvcfg/wDA5yE+bT2zGfPhbz6alivuckUR2Urif3o6lgdrsKZo9VwewkVfC8eeDWRutAu3Wg6bpX63WgATvQhh1oxj6/JTt2Y9Z8O+B6Dnvexuxz7PaJznyf9sxzPf3dPIb9yAswJXTXnfku+XZe6/OT1MoDuzLmkq/3ff8NLdmJaeSuxozqN5tfjwqG3e/BmG+O1d+Bfv1/UEsHCOse+Mv1BwAAoC0AAFBLAQIUABQACAAIACNe4UDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAI17hQOse+Mv1BwAAoC0AAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACMCAAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /><br /> |
[[Kategorie:Einführung_P]] | [[Kategorie:Einführung_P]] |
Version vom 1. Juli 2012, 21:31 Uhr
Das Dreieck wird an Punkt D um 90 gedreht. Das gedrehte Dreieck wird nun um den eingezeichneten Vektor verschoben. Gibt es einen Punkt der Ebene, der nun genau wieder an seinem ursprünglichen Ort liegt? Konstruieren Sie ggf. diesen Punkt und begründen Sie!