Serie 4 SoSe 2013: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 4.05)
(Aufgabe 4.05)
Zeile 29: Zeile 29:
 
#<math>A:=\left\{P\left(x_P,y_P\right)|y_p=\frac{3}{4}x_p - \frac{7}{8}\right\}</math>
 
#<math>A:=\left\{P\left(x_P,y_P\right)|y_p=\frac{3}{4}x_p - \frac{7}{8}\right\}</math>
 
#<math>B:=\left\{P\left(x_P,y_P\right)|y_p=\frac{36,3}{48,4}x_p - 0,875\right\}</math>
 
#<math>B:=\left\{P\left(x_P,y_P\right)|y_p=\frac{36,3}{48,4}x_p - 0,875\right\}</math>
Beweisen Sie <math>A \cap B = A</math>.
+
Beweisen Sie <math>A \cap B = A</math>.<br />
 
[[Lösung von Aufgabe 4.05_S SoSe 13]]
 
[[Lösung von Aufgabe 4.05_S SoSe 13]]
  

Version vom 11. Mai 2013, 17:26 Uhr

Inhaltsverzeichnis

Aufgabe 4.01

Der Innenwinkelsatz für Dreiecke sei bereits bewiesen.
Formulieren Sie einen analogen Satz für Vierecke und beweisen Sie diesen Satz.
Lösung von Aufgabe 4.01_S SoSe_13

Aufgabe 4.02

Es sei n eine beliebige natürliche Zahl, die größer als 2 ist. Entwickeln Sie eine Abbildungsvorschrift, die jedem solchen n die Innenwinkelsumme des entsprechenden n-Ecks zuordnet.
Lösung von Aufgabe 4.02_S SoSe_13

Aufgabe 4.03

a) Wie lautet der Stufenwinkelsatz? (schauen Sie bei Bedarf in Schulbüchern nach).
b) Es seien a und b zwei nichtidentische Geraden, die durch eine dritte Gerade c jeweils in genau einem Punkt S geschnitten werden. Bei diesem Schnitt entstehen die Stufenwinkel \alpha und \beta . Welche der folgenden Aussagen repräsentiert den Stufenwinkelsatz bzw. ist eine zu diesem Satz äuivalente Aussage (Begründen Sie jeweils)?

  1. \ a \ \|| \ b \Rightarrow \alpha \tilde {=} \beta
  2. \alpha \tilde {=} \beta \Rightarrow \ a \ \|| \ b
  3. \|\alpha \|\not= \| \beta \| \Rightarrow \exists S: S \in a \wedge S \in b
  4. \ a \ \|| \ b \Leftrightarrow \alpha \tilde {=} \beta

Lösung von Aufgabe 4.03_S SoSe 13


Aufgabe 4.04

Es seien A und B zwei Punktmengen. Was müssen Sie konkret zeigen, wenn Sie beweisen wollen, dass A = B ?
Lösung von Aufgabe 4.04_S SoSe 13

Aufgabe 4.05

Wir gehen davon aus, dass wir der ebenen Geometrie ein kartesisches Koordinatensystem zugrunde gelegt haben. Bezüglich dieses Systems definieren wir die folgenden beiden Punktmengen:

  1. A:=\left\{P\left(x_P,y_P\right)|y_p=\frac{3}{4}x_p - \frac{7}{8}\right\}
  2. B:=\left\{P\left(x_P,y_P\right)|y_p=\frac{36,3}{48,4}x_p - 0,875\right\}

Beweisen Sie A \cap B = A.
Lösung von Aufgabe 4.05_S SoSe 13