Lösung von Aufgabe 2.3 (WS 11/12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 10: Zeile 10:
  
 
* Ich denke, dass alle drei gleichschenklige Trapze sind, da bei allen beide Schenkel gleich lang sind.Die Mittlere und Rechte Figur sind auch noch symmetrisch, d.h. dass zwei Innenwinkel an einer der parallelen Seite gleich sind.  
 
* Ich denke, dass alle drei gleichschenklige Trapze sind, da bei allen beide Schenkel gleich lang sind.Die Mittlere und Rechte Figur sind auch noch symmetrisch, d.h. dass zwei Innenwinkel an einer der parallelen Seite gleich sind.  
 +
 +
** Beachten Sie den Hinweis in der Aufgabenstellung: "Beachten Sie dabei, dass ein Parallelogramm dann und nur dann ein gleichschenkliges Trapez ist, wenn es einen rechten Innenwinkel besitzt." --[[Benutzer:Spannagel|Spannagel]] 20:28, 24. Okt. 2011 (CEST)
  
  
 
[[Category:Einführung_Geometrie]]
 
[[Category:Einführung_Geometrie]]

Version vom 24. Oktober 2011, 19:28 Uhr

Definieren Sie den Begriff gleichschenkliges Trapez. Beachten Sie dabei, dass ein Parallelogramm dann und nur dann ein gleichschenkliges Trapez ist, wenn es einen rechten Innenwinkel besitzt.

Es ist doch jedes Parallelogramm ein gleichschenkliges Trapez und nicht nur mit rechtem Innenwinkel (klar die auch, das sind dann die Rechtecke) , Oder? --RicRic

Ein gleichschenkliges Trapez ist ein Viereck, welches zwei zueinander gegenüberliegende parallele Seiten hat und zwei gegenüberliegende gleich lange Seiten. --RicRic

Bei welcher Figur handelt es sich denn um ein gleichschenkliges Trapez und wie sieht die Begründung aus?--Tutor Andreas 17:37, 23. Okt. 2011 (CEST)



  • Ich denke, dass alle drei gleichschenklige Trapze sind, da bei allen beide Schenkel gleich lang sind.Die Mittlere und Rechte Figur sind auch noch symmetrisch, d.h. dass zwei Innenwinkel an einer der parallelen Seite gleich sind.
    • Beachten Sie den Hinweis in der Aufgabenstellung: "Beachten Sie dabei, dass ein Parallelogramm dann und nur dann ein gleichschenkliges Trapez ist, wenn es einen rechten Innenwinkel besitzt." --Spannagel 20:28, 24. Okt. 2011 (CEST)