12)
Aus Geometrie-Wiki
Version vom 14. Dezember 2011, 17:54 Uhr von Andreas (Diskussion | Beiträge)
Beweisen Sie: Jede Strecke hat höchstens einen Mittelpunkt.
Vor.: Es sei eine Strecke und M der Mittelpunkt von
Beh.: Es existiert höchstens ein Mittelpunkt
Ann.: Es existiert mit folgenden Eigenschaften: ist Mittelpukt von und ungleich
Beweis:
Schritt | Begründung |
---|---|
(1)zw.(A,M,B) | Vor., Def Mittelpunkt |
(2)zw.(A,M2,B) | Ann. |
(3) | (1),zw Relation |
(4) | (2), zw Relation |
(5) | Ann. |
(6) | (3),(4), Rechen in R |
(7) | Def. Mittelpunkt (3),(4) |
(8) | Def. Mittelpunkt (3),(4) |
(9) | (7) |
(10) | (8) |
(11) | (10) |
(12) M=M_2 | (11) Axiom vom Lineal |
Nicht alle Schritte kommen in einer Begründung vor. Also brauch man diese nicht, um zu Schritt 12 zu kommen. Was meint ihr?--Tutorin Anne 15:25, 7. Dez. 2011 (CET)