Wichtige Begriffe der Geometrie - Glossar

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Hier soll ein Glossar wichtiger geometrischer Begriffe und Sätze (in Bezug auf unsere Veranstaltung)entstehen. Bitte ergänzen Sie!


Inhaltsverzeichnis

Grundbegriffe

  • disjunkt - elementfremd, nicht gleich
  • identitiv - antisymmetrisch, gleich
    (z.B. wenn aRb und bRa dann a=b) --TimoRR 21:20, 5. Jun. 2010 (UTC)
  • inzident - beschreibt die Zugehörigkeit - Elementbezeichnung
    (z.B. inzidiert ein Punkt mit einer Geraden g, wenn er zu der Geraden g gehört) --TimoRR 21:20, 5. Jun. 2010 (UTC)
  • kollinear - eine Gerade, die alle Punkte einer Menge enthält
  • komplanar - eine Ebene, die alle Punkte einer Menge enthält --TimoRR 21:20, 5. Jun. 2010 (UTC)
  • reflexiv - jedes Element steht in Relation zu sich selbst
  • symmetrisch - wenn zwei Elemente in der gleichen Klasse liegen
    (z.B. sind a€M und b€M, dann gilt aRb aber auch bRa) --TimoRR 21:20, 5. Jun. 2010 (UTC)
  • transitiv - wenn ein Element 1 zu dem nächsten Element 2 in Relation steht und das nächste
    Element 2 zu dem übernächsten Element 3 in Relation steht, dann steht das Element 1 automatisch
    auch in Relation zu dem übernächsten Element 3 in Relation --TimoRR 21:20, 5. Jun. 2010 (UTC)

"bitte überprüft das mal jemand ;-)"

Axiome

  • Inzidenzaxiome:
AXIOM I/0
Geraden und Ebenen sind Punktmengen.
AXIOM I/1(Axiom von der Geraden)
Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält.
AXIOM I/2
Zu jeder Geraden gibt es wenigstens zwei Punkte, die dieser Geraden angehören.
AXIOM I/3
Es gibt wenigstens 3 Punkte, die nicht kollinear sind.
Axiom I/4
Zu je drei nichtkollinearen Punkten gibt es genau eine Ebene, die diese drei Punkte enthält. Jede Ebene enthält (wenigstens) einen Punkt.
Axiom I/5
Wenn zwei Punkte einer Geraden g in einer Ebene E liegen, so gehört g zu E.
Axiom I/6
Wenn zwei Ebenen einen Punkt gemeinsam haben, so haben sie noch mindestens einen weiteren Punkt gemeinsam.
Axiom I/7
Es gibt vier Punkte, die nicht komplanar sind.
  • Abstandsaxiome:
Axiom II.1: (Abstandsaxiom)
Zu je zwei Punkten \ A und \ B gibt es eine eindeutig bestimmte nicht negative reelle Zahl \ d mit d=0:\Longleftrightarrow A=B.
Axiom II.2:
Für zwei beliebige Punkte \ A und \ B gilt \left| AB \right| = \left| BA \right|.
Axiom II/3: (Dreiecksungleichung)
Für drei beliebige Punkte \ A, B und \ C gilt: \left|AB \right|+ \left| BC \right| \geq \left| AC \right|.
Axiom III.1: (Axiom vom Lineal)
Zu jeder nicht negativen reelen Zahl \ d gibt es auf jedem Strahl \ p genau einen Punkt, der zum Anfangspunkt von \ p den Abstand \ d hat.

Definitionen

Definition I/2: (kollinear)
Eine Menge von Punkten heißt kollinear, wenn es eine Gerade gibt, die alle Punkte der Menge enthält.
Schreibweise: koll(A, B, C, ...) Sollten die Punkte A, B, C einer Menge nicht kollinear sein, so schreibt man:nkoll(A, B, C)
Definition I/3: (Inzidenz Punkt Ebene)
Ein Punkt P inzidiert mit einer Ebene E, wenn P ein Element der Ebene E ist.
Definition I/4: (Inzidenz Gerade Ebene)
Eine Gerade g gehört zu einer Ebene E, wenn jeder Punkt von g zu E gehört.
Definition I/5: (Raum)
Die Menge aller Punkte P wird Raum genannt.
Definition I/6: (komplanar)
Eine Menge von Punkten heißt komplanar, wenn es eine Ebene gibt, die alle Punkte der Menge enthält. Schreibweise: komp(A, B, C, D, ...) (analog nkomp(..) für nicht komplanar)
Definition I/7: (komplanar für Geraden)
Zwei Geraden g und h sind komplanar, wenn es eine Ebene gibt, in der beide Geraden vollständig liegen.
Schreibweise: komp(g, h)
Definition I/8: (Geradenparallelität)
Zwei Geraden g und h sind parallel, wenn sie identisch oder komplanar und schnittpunktfrei sind.
In Zeichen: g||h.
Definition I/9: (windschief )
Zwei Geraden g und h sind windschief, wenn sie schnittpunktfrei und nicht parallel sind.
Definition I/10: (parallel für Ebenen)
Zwei Ebene E1 und E2 sind parallel, wenn sie keinen Punkt gemeinsam haben.
Definition II.1: (Abstand)
Der Abstand zweier Punkte \ A und \ B ist die Zahl, die nach dem Abstandsaxiom den Punkten \ A und \ B zugeordnet werden kann.
Schreibweise: d = \left| AB \right|.
Definition II.1: (Zwischenrelation)
Ein Punkt \ B liegt zwischen zwei Punkten \ A und \ C, wenn  \left| AB \right| + \left| BC \right| = \left| AC \right| gilt und der Punkt \ B sowohl von \ A als auch von \ C verschieden ist.
Schreibweise:  \operatorname{Zw} \left( A, B, C \right)
Definition II.2: (Strecke, Endpunkte einer Strecke)
Es seien \ A und \ B zwei verschiedene Punkte. Die Punktmenge, die \ A und \ B sowie alle Punkte, die zwischen \ A und \ B liegen, enthält, heißt Strecke \overline{AB}. Stimmt das? --Sternchen 13:07, 5. Jun. 2010 (UTC)
Definition II.3: (Länge einer Strecke)
Es seien \ A und \ B zwei verschiedene Punkte. Der Abstand \vert AB \vert heißt Länge der Strecke \overline{AB}. OK? --Sternchen 13:09, 5. Jun. 2010 (UTC)
Definition II.3: (Halbgerade, bzw. Strahl)
Lösung_von_Aufgabe_6.5
Lösung_von_Aufgabe_6.6
Definition III.1: (Mittelpunkt einer Strecke)
Wenn ein Punkt \ M der Strecke \overline{AB} zu den Endpunkten \ A und \ B jeweils den selben Abstand hat, dann ist er der Mittelpunkt der Strecke \overline{AB}.


Sätze

Satz I.1
Es seien g und h zwei Geraden. Wenn g und h nicht identisch sind, haben sie höchstens einen Punkt gemeinsam.
Satz I.2: (Kontraposition von Satz I.1)
Es seien g und h zwei Geraden.
Wenn g und h mehr als einen Punkt gemeinsam haben, so sind g und h identisch.
Satz I.3: (Existenz von drei Geraden)
Es existieren mindestens drei paarweise verschiedene Geraden.
Satz I.5:
Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkte beider Ebenen liegen.
Satz I.6:
Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.
Satz I.7:
Jede Ebene enthält (wenigstens) drei Punkte.
Satz II.1
Aus  \operatorname{Zw} \left( A, B, C \right) folgt  \operatorname{Zw} \left( C, B, A \right) .
Satz II.2:
Aus  \operatorname{Zw} \left( A, B, C \right) folgt  \operatorname{koll} \left( A, B, C \right) .
Satz II.3
Es sei  \operatorname{koll} \left( A, B, C \right) mit \ A, B, C sind paarweise verschieden.
Dann gilt  \operatorname{Zw} \left( A, B, C \right) oder  \operatorname{Zw} \left( A, C, B \right) oder  \operatorname{Zw} \left( B, A, C \right) .
Satz II.4
Es sei \ O ein Punkt einer Geraden \ g.
Die Teilmengen Fehler beim Parsen(Unbekannte Funktion „\set“): \ OA^+ \set minus \left\{ O \right\}

,  \left\{ O \right\} und  \ OA^- \setminus \left\{ O \right\} bilden eine Klasseneinteilung der Geraden \ g.

Satz III.1: (Existenz und Eindeutigkeit des Mittelpunkte einer Strecke)
Jede Strecke hat genau einen Mittelpunkt.