Verschiebungen 2010

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Konstruktion des Bildes eines Punkte bei einer Verschiebung

Unter Verwendung der Vektorrechnung (Pfeilklassen)



"Konstruktionsvorschrift": P'=P+\overrightarrow{AB}



Konstruktionsbeschreibung

Gegeben sind ein Punkt \ D und sein Bildpunkt \ D', sowie ein Punkt \ P. Gesucht ist sein Bildpunkt \ P'bei der Verschiebung an \overrightarrow{DD'}

(1) Für den Fall, dass gilt: \ {D, D', P} sind nicht kollinear.

1. Parallele zu \overline{DD'} durch \ P
2. Parallele zu \overline{DP} durch \ D'
3. Der Schnittpunkt der beiden zuvor konstruierten Parallelen ist der gesuchte Punkt \ P'

(2) Für den Fall, dass gilt: \ {D, D', P} sind kollinear.

1. Konstruiere einen beliebigen Punkt \ Q der Ebene der nicht kollinear zu \ {D, D', P} ist.
2. Konstruiere den Bildpunkt \ Q' von \ Q bei der Verschiebung an \overrightarrow{DD'}, wie in (1) beschrieben.
3. Konstruiere nun den Bildpunkt \ P' von \ P bei der Verschiebung an \overrightarrow{QQ'} wie in (1) beschrieben. \ P' ist nun auch der gesuchte Bildpunkt für die Verschiebung an \overrightarrow{DD'}, da \overrightarrow{DD'} und \overrightarrow{QQ'} den gleichen Richtungssinn haben. --Steph85

Definition der Verschiebung

...

Eine andere Möglichkeit der Definition?

Es sei \vec{AB} ein Pfeil. Unter der Verschiebung längs des Pfeiles \vec{AB} vresteht man eine Abbildung der Ebene auf sich, mit folgenden Eigenschaften:
Für das Bild eines Punktes P, benannt mit P' muss gelten:
1.  |\ AB | = |\ PP'|
2.  \overline{AB} \|  \overline{PP'}
3. \vec{AB} und \vec{PP'} haben den selbern Richtungssinn
--Tja??? 17:23, 16. Nov. 2010 (UTC)

Sätze