Lösung von Aufgabe 11.5P (SoSe 12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Das Dreieck \overline{ABC} wird an Punkt D um 90 gedreht. Das gedrehte Dreieck wird nun um den eingezeichneten Vektor verschoben. Gibt es einen Punkt der Ebene, der nun genau wieder an seinem ursprünglichen Ort liegt? Konstruieren Sie ggf. diesen Punkt und begründen Sie!



Punkt g,
meine konstruktion:
1. eine senkrechte zum verktor durch den punkt d.
2. punkt f: halbe vektorlänge vom punkt d abgetragen
3. senkrechte zu df durch den punkt f 4. halbe vektorlänge abgetragen --> punkt g

begründung:
1. der gesuchte punkt muss durch die drehung an genau den punkt kommen, der genau gegenläufig dem vektor liegt (ich weiß nicht, wie man dies nennt), d.h. der punkt g und der punkt g' liegen parallel zum vektor und der abstand von g zu g' entspricht der vektorlänge.
2. genaue lage des punktes g: kann ich nicht wirklich begründen; ich habe mir ein quadrat vorgestellt, g ung g' sind zwei ecken des quadrates und die diagonalen des quadrates schneiden sich in d. daher sind sowohl der abstand zwischen d und f als auch zwischen f und g die halbe vektorlänge)

11.5.JPG --Studentin 22:31, 1. Jul. 2012 (CEST)

Du kommst auf den richtigen Punkt G. Allerdings kannst du die Schritte selbst nicht ganz begründen. G kann auch anders konstruiert werden.
Denkt hier daran, dass eine Drehung eine Verkettung zweier Geradenspiegelungen, die sich schneiden ist und eine Verschiebung, eine Verkettung zweier paralleler Geradenspiegelungen. Zeichnet diese ein und schiebt sie so ineinander, dass ihr möglichst einige Spiegelungen reduzieren könnt.--Tutorin Anne 20:21, 5. Jul. 2012 (CEST)

ich finde meine konstruktion okay - ich habe es mir viel leichter gemacht und immerhin muss ich nicht zwei spiegelachsen übereinander schieben. ;-)
ich weiss nur nicht, wie ich sie hier schriftlich erklären soll...
vielleicht kann es jemand nachvollziehen und die begründung nachreichen?--Studentin 22:46, 9. Jul. 2012 (CEST)


45 minuten später versuche ich es selöbst noch einmal, ich habe das quadrat eingezeichnet:
11.5 (2).JPG
wenn ich weiss, dass der gesuchte punkt (p) bei einer drehung um 90° so ankommen muss (p'), dass er bei der anschließenden verschiebung (p´´) um den vektor wieder bei seinem ursprungspunkt (p) landet, weiß ich ja, dass die punkte p und p' irgendwo parallel zum vektor liegen müssen und der abstand beider punkte der vektorlänge entsprechen muss.
gleichzeitig weiß ich ja, dass der abstand zwischen punkt p und d gleich groß dem abstand des punktes p' zu d sein muss. (drehung)
der winkel pdd' soll 90° betragen. also habe ich ein dreieck dpp' mit pp' dem gleichen abstand entsprechend der vektorlänge und dem abstand d zu f (mittelpunkt der strecke pp') mit der halben vektorlänge.
... ich merke selbst, dass ich es wohl am bild mündlich erklären müsste...
--Studentin 23:31, 9. Jul. 2012 (CEST)

  • Danke für die ausführliche Erklärung und Begründung deiner Konstruktion. Ich kann diese nachvollziehen und würde sagen, sie ist korrekt. Es gibt auch die Möglichkeit über Achsenverschiebung zu argumentieren, dann kann man sich auch gleich auf Aufgabe 11.4 beziehen - falls man diese mit Achsenverschiebungen begründet hat.--Tutorin Anne 09:17, 10. Jul. 2012 (CEST)



Hi, da ich irgendwie noch nicht ganz verstanden habe, wie man Dateien von geogebra hier einspeichert, schreibe ich kurz die Lösung. Wir haben die Drehung Sa°Sb und die zwei parallelen Achsenspiegelungen Sc°Sd, wobei deren Abstand = der Vektorlänge ist. Jetzt kann ich - wie bei Aufgabe 11.4 gezeigt - bei einer Verkettung dieser Spiegelungen die Spiegelachsen so drehen bzw. die Parallelen so verschieben, dass Sa°Sc`identisch sind und wegfallen. Es bleibt die Verkettung Sb°Sd` übrig. Mathemtischer betrachtet sieht das so aus: (Sa°Sb)°(Sc°Sd)=(Sa°Sc`)[wobei diese id. sind und wegfallen werden]°(Sb°Sd`)=Sb°Sd`, mit Winkel (b,S2,d`)=45° und |ad`|=Vektorlänge. D.H. Jener Punkt des Dreiecks ABC wird bei der ingesamten Ausführung wieder auf sich selbst abgebildet, der durch den "zweiten Drehpunkt S2" geht, weil dieser Punkt der einzige Punkt ist, der bei der Verkettung von Sb°Sd` Fixpunkt ist. Schnitzel 12:01, 13. Jul. 2012 (CEST)