Übung 10
Inhaltsverzeichnis |
Aufgabe 10.1
Definition V.9 : (noch mehr Senkrecht)
- Eine Gerade
und eine Strecke
stehen senkrecht aufeinander, wenn die
und die Gerade
senkrecht aufeinander stehen.
- Eine Gerade
Ergänzen Sie:
- Eine Strecke
und eine Strecke
stehen senkrecht aufeinander, wenn ... .
- Eine Strecke
- Eine Gerade
und eine Ebene
stehen senkrecht aueinander, wenn es in
... .
- Eine Gerade
Aufgabe 10.2
Beweisen Sie:
Satz V.5: (Existenz und Eindeutigkeit der Senkrechten zu einer Geraden auf einem Punkt dieser Geraden)
- Es sei
eine Gerade der Ebene
. Ferner sei
ein Punkt auf
. In der Ebene
gibt es genau eine Gerade
, die durch
geht und senkrecht auf
steht.
- Es sei
Aufgabe 10.3
Formulieren Sie den Beweis von Satz VI.1, ohne das Tabellenbeweischema zu verwenden. Ferner mögen Sie angehalten sein, die mathematische Formelsprache zu vermeiden. Kurz und gut, ein Beweis mit eigenen Worten, grammatikalisch korrekt formuliert.
Aufgabe 10.4
Warum ist die folgende Definition des Begriffs Winkelhalbierende nicht korrekt?
Die Halbgerade ist die Winkelhalbierende des Winkels
, wenn
.
Eine Skizze genügt.
In der ersten Formulierung hatte ich anstelle von geschrieben. Dadurch war die Aufgabe natürlich, na ja Blödsinn.--*m.g.* 21:44, 29. Jun. 2010 (UTC)
Aufgabe 10.5
Beweisen Sie Satz VI.eineinhalb