Übung Aufgaben 2 (SoSe 12)
Inhaltsverzeichnis |
Aufgaben zu Definitionen
Aufgabe 3.1
Unter einer Konventionaldefinition versteht man eine Definition, die in der Form "Wenn-Dann" formuliert wurde.
Geben Sie zwei prinzipiell verschiedene Konventionaldefinitionen des Begriffs Mittelsenkrechte einer Strecke an.
Lösung von Aufgabe 3.1_S (SoSe_12)
Aufgaben zu Sätzen und Beweisen
Aufgabe 3.2
Wir gehen von folgender Implikation aus: Wenn zwei Geraden g und h nicht identisch sind, dann haben sie höchstens einen Punkt gemeinsam.
a) Wie lautet die Kontraposition dieser Implikation?
b) Wie lautet die Annahme, wenn Sie diese Implikation durch einen Widerspruch beweisen möchten?
Lösung von Aufgabe 3.2_S (SoSe_12)
Aufgabe 3.3
Satz: In einem Dreieck mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander.
a) Welcher Beweis ist korrekt? Begründen Sie ausführlich! (Der Basiswinkelsatz und seine Umkehrung seien bereits bewiesen.)
Beweis 1)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen.
Beweis 2)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.
b) Beweisen Sie den Satz indirekt mit Widerspruch.
Lösung von Aufgabe 3.3_S (SoSe_12)
Aufgabe 3.4
Das Parallelenaxiom lautet wie folgt:
Zu jeder Geraden g und zu jedem nicht auf g liegenden Punkt A gibt es höchstens eine Gerade, die durch A verläuft und zu g parallel ist.
Nutzen Sie dieses Axiom, beim Lösen der folgenden Aufgabe:
Es seien a, b und c drei paarweise verschiedene Geraden in ein und derselben Ebene.
a) Beweisen Sie folgende Implikation durch einen Widerspruchsbeweis: .
b) Welche Eigenschaft der Relation auf der Menge aller Geraden einer Ebene haben Sie hiermit gezeigt?
Lösung von Aufgabe 3.4_S (SoSe_12)
Aufgabe 3.5
Gegeben sei folgende Äquivalenz: Der Abstand zweier Punkte A und B ist genau dann 0, wenn A und B identisch sind.
a) Formulieren Sie die beiden Implikationen, die in dieser Aussage stecken.
b) Wie lautet jeweils die Kontraposition der beiden Implikationen?
c) Wie lauten die beiden Annahmen, wenn Sie diese Implikationen jeweils durch einen Widerspruch beweisen möchten?
Lösung von Aufgabe 3.5_S (SoSe_12)