Definitionen
Definitionen
Definition des Begriffs der Relation:
- Definition: (n-stellige Relation)
- Es seien
Mengen, wobei keine dieser Mengen die leere Menge ist. Jede Teilmenge aus
ist eine
stellige Relation.
- Es seien
- Definition: (Äquivalenzrelation)
- Eine Relation
in einer Menge
heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.
- Eine Relation
Definition I.2: (kollinear)
- Eine Menge von Punkten heißt kollinear, wenn es eine Gerade gibt, die alle Punkte der Menge enthält.
- Schreibweise: koll(A, B, C, ...) Sollten die Punkte A, B, C einer Menge nicht kollinear sein, so schreibt man:nkoll(A, B, C)
Definition I.3: (Inzidenz Punkt Ebene)
- Ein Punkt P inzidiert mit einer Ebene E, wenn P ein Element der Ebene E ist.
Definition I.4: (Inzidenz Gerade Ebene)
- Eine Gerade g gehört zu einer Ebene E, wenn jeder Punkt von g zu E gehört.
Definition I.5: (Raum)
- Die Menge aller Punkte P wird Raum genannt.
Definition I.6: (komplanar)
- Eine Menge von Punkten heißt komplanar, wenn es eine Ebene gibt, die alle Punkte der Menge enthält. Schreibweise: komp(A, B, C, D, ...) (analog nkomp(..) für nicht komplanar)
Definition I.7: (komplanar für Geraden)
- Zwei Geraden g und h sind komplanar, wenn es eine Ebene gibt, in der beide Geraden vollständig liegen.
- Schreibweise: komp(g, h)
Definition I.8: (Geradenparallelität)
- Zwei Geraden g und h sind parallel, wenn sie identisch oder komplanar und schnittpunktfrei sind.
- In Zeichen: g||h.
Definition I.9: (windschief )
- Zwei Geraden g und h sind windschief, wenn sie schnittpunktfrei und nicht parallel sind.
Definition I.10: (parallel für Ebenen)
- Zwei Ebene E1 und E2 sind parallel, wenn sie keinen Punkt gemeinsam haben.
Definition II.1: (Abstand)
- Der Abstand zweier Punkte
und
ist die Zahl, die nach dem Abstandsaxiom den Punkten
und
zugeordnet werden kann.
Schreibweise:.
Definition II.2: (Zwischenrelation)
- Ein Punkt
liegt zwischen zwei Punkten
und
, wenn
gilt und der Punkt
sowohl von
als auch von
verschieden ist.
- Schreibweise:
Definition II.3: (Strecke, Endpunkte einer Strecke)
- Es seien
und
zwei verschiedene Punkte. Die Punktmenge, die
und
sowie alle Punkte, die zwischen
und
liegen, enthält, heißt Strecke
. Stimmt das? --Sternchen 13:07, 5. Jun. 2010 (UTC)
- Es seien
Unter der Strecke versteht man folgende Punktmenge:
--Mathemagic 11:39, 31. Dez. 2011 (CET)
Definition II.4: (Länge einer Strecke)
- Es seien
und
zwei verschiedene Punkte. Der Abstand
heißt Länge der Strecke
. OK? --Sternchen 13:09, 5. Jun. 2010 (UTC)
- Es seien
Definition II.5: (Halbgerade, bzw. Strahl)
- Eine informelle Definition:
- Definition: Halbgerade
- Gegeben seien zwei verschiedene Punkte
und
. Unter dem Strahl bzw. der Halbgeraden
versteht man die Strecke
vereinigt mit der Menge aller der Punkte, die man erhält, wenn man
über
hinaus verlängert.
- Gegeben seien zwei verschiedene Punkte
- Definition: Halbgerade
- Formulieren Sie eine mathematisch korrekte Definition des Begriffs Halbgerade
.
- Formulieren Sie eine mathematisch korrekte Definition des Begriffs Halbgerade
- Definition: Halbgerade
- Definition: Halbgerade
- diese Lösung ist richtig!--Schnirch 12:48, 16. Jun. 2010 (UTC)
- Gegeben seien zwei nicht identische Punkte
und
. Unter
wollen wir die Menge aller Punkte
verstehen, die man erhält, wenn man
über
hinaus verlängert. Geben Sie eine mathematisch korrekte Definition für die Menge dieser Punkte
an.
- Gegeben seien zwei nicht identische Punkte
- Lösung: Ergänzen Sie einfach die folgende Mengenschreibweise:
- diese Lösung ist richtig! --Schnirch 12:49, 16. Jun. 2010 (UTC)
Definition III.1: (Mittelpunkt einer Strecke)
- Wenn ein Punkt
der Strecke
zu den Endpunkten
und
jeweils den selben Abstand hat, dann ist er der Mittelpunkt der Strecke
.
Definition IV.1: (offene Halbebene)
- Es sei
eine Ebene in der die Gerade
liegen möge. Ferner sei
ein Punkt der Ebene
, der nicht zur Geraden
gehört.
Unter den offenen Halbebenenund
bezüglich der Trägergeraden
versteht man die folgenden Punktmengen:
- Es sei
muss es nicht heißen: \ g
da es sich um eine offene Halbebene handelt, darf g doch nicht enthalten sein, oder? --Frühling 15:10, 28. Jun. 2010 (UTC)
Definition IV.2: (Halbebene)
- Es sei
eine Gerade der Ebene
.
und
seien die beiden offenen Halbebenen von
bezüglich
. Unter den (geschlossenen) Halbebenen von
bezüglich
versteht die beiden Punktmengen, die durch die Vereinigung jeder dieser beiden offenen Halbebene von
bezüglich der Geraden
mit jeweils dieser Geraden
entstehen.
- Es sei
Fehlt dann bei der Definition von gQ- nicht die Trägergerade g? g gehört doch im Falle der geschlossenen Halbebenen zu beiden HE dazu?
- Bemerkung: Für die formale Beschreibung von offenen und geschlossenen Halbebenen wird jeweils dieselbe Bezsichnung verwendet: offene Halbebene:
, (geschlossene) Halbebene:
. Derr weitere Gebrauch der Sprache kennzeichnet, ob es sich um eine offene oder um die geschlossene Halbene handeln soll. Aus Gründen der Vereinfachung sei vereinbart, dass
bzw.
immer die geschlossene Halbebene meint. Soll die offene Halbebene gemeint sein, so ist dieses durch den Zusatz "offen" zu kennzeichnen.
- --*m.g.* 21:50, 23. Jun. 2010 (UTC)
- Bemerkung: Für die formale Beschreibung von offenen und geschlossenen Halbebenen wird jeweils dieselbe Bezsichnung verwendet: offene Halbebene:
Dies habe ich aus dem Skript kopiert. --Rakorium 11:43, 7. Jul. 2010 (UTC)
Definition IV.3: (konvexe Punktmenge)
- Eine Menge
von Punkten heißt konvex, wenn mit je zwei Punkten
und
dieser Menge die gesamte Strecke
zu
gehört.
- Eine Menge
Definition V.1: (Winkel)
- Ein Winkel heißt die Vereinigungsmenge zweier Strahlen p und q, die einen gemeinsamen Anfangspunkt S haben.
oder
- Ein Winkel ist ein Paar Halbgeraden p, q mit gemeinsamen Anfangspunkt S.
Definition V.2: (Inneres eines Winkels)
- Das Innere eines Winkels
ist der Schnitt ...der beiden Halbebenen
und
- Das Innere eines Winkels
Definition V.3: (Scheitelwinkel)
- Die Winkel
und
sind Scheitelwinkel.
- Die Winkel
Zwei Winkel sind Scheitelwinkel, wenn ihre Schenkel ein Paar sich schneidender Geraden bilden.
--Gänseblümchen 09:10, 28. Jul. 2010 (UTC)
Definition V.4: (Nebenwinkel)
- Die Winkel
und
sind Nebenwinkel.
- Die Winkel
Zwei Winkel sind Nebenwinkel, wenn sie einen gemeinsamen Schenkel haben und die anderen 2 Schenkel eine Gerade bilden. --Gänseblümchen 09:14, 28. Jul. 2010 (UTC)
Definition V.5: (Größe eines Winkels)
- Die Zahl
, die entsprechend des Winkelmaßaxioms einem jeden Winkel
eindeutig zugeordnet werden kann, wird die Größe oder das Maß von
genannt.
In Zeichen:.
- Die Zahl
Definition V.6 : (Rechter Winkel)
- Wenn ein Winkel die selbe Größe wie einer seiner Nebenwinkel hat, so ist er ein rechter Winkel.
Definition V.7 : (Supplementärwinkel)
- Zwei Winkel heißen genau dann supplementär, wenn die Summe ihrer Größen 180 beträgt.
Definition V.8 : (Relation senkrecht auf der Menge der Geraden)
- Es seien
und
zwei Geraden. Wenn sich
und
schneiden und bei diesem Schnitt rechte Winkel entstehen, dann stehen die Geraden
und
senkrecht aufeinader.
- Es seien
- In Zeichen:
(in der Formelbeschreibungssprache Tex: \perp , läßt sich gut merken, von perpendicular)
- In Zeichen:
Definition V.9 : (noch mehr Senkrecht)
- Eine Gerade
und eine Strecke
stehen senkrecht aufeinander, wenn die
und die Gerade
senkrecht aufeinander stehen.
- Eine Gerade
Ergänzen Sie:
- Eine Strecke
und eine Strecke
stehen senkrecht aufeinander, wenn ... die Gerade AB und die Gerade CD senkrecht aufeinander stehen??? --Maude001 11:45, 27. Jun. 2010 (UTC)
- Eine Strecke
- Eine Gerade
und eine Ebene
stehen senkrecht aufeinander, wenn es in
... zwei Geraden gibt, die nicht parallel oder identisch sind und vollständig in
liegen und auf die
senkrecht steht. --Löwenzahn 15:18, 2. Jul. 2010 (UTC)
- Eine Gerade
Definition VI.1: (Mittelsenkrechte)
- Es sei
eine Gerade und
eine Strecke, die durch
im Punkt
geschnitten wird.
ist die Mittelsenkrechte von
, wenn
- Es sei
Definition VI.2
- Es seien
,
und
drei Halbgeraden ein und derselben Ebene mit dem gemeinsamen Anfangspunkt
. Die Halbgerade
ist die Winkelhalbierende des Winkels
, wenn
im Inneren von
liegt und die beiden Winkel
und
dieselbe Größe haben.
- Es seien
Definition VII.1: (Streckenkongruenz)
- Zwei Strecken sind kongruent, wenn sie dieselbe Länge haben.
- In Zeichen
- Zwei Strecken sind kongruent, wenn sie dieselbe Länge haben.
Definition VII.2 : (Winkelkongruenz)
- Zwei Winkel die dieselbe Größe haben heißen kongruent zueinander.
- In Zeichen:
- Zwei Winkel die dieselbe Größe haben heißen kongruent zueinander.
Definition VII.3: (Dreieckskongruenz)
- Wenn für zwei Dreiecke
und
die folgenden 6 Kongruenzen
- Wenn für zwei Dreiecke
- gelten,
- dann sind die beiden Dreiecke
und
kongruent zueinander.
Definition VII.4 : (gleichschenkliges Dreieck)
as können sie selbst. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.
Ein Dreieck mit zwei zueinanderkongruenten Seiten heißt gleichschenkliges Dreieck. Die beiden zueinander kongruenten Seiten heißen Schenkel des gleichseitigen Dreiecks. Die dritte Seite des gleichschenkligen Dreiecks heißt Basis. Die Innenwinkel eines gleichschenkligen Dreiecks, dessen Scheitelpunkte die Eckpunkte der Basis sind heißen Basiswinkel des gleichschenkligen Dreiecks.
--Rakorium 07:24, 8. Jul. 2010 (UTC)
Definition VII.4 : (Peripheriewinkel)
Ein Winkel heißt Peripheriewinkel, wenn der Scheitel des Winkel Element eines Kreises ist, und die beiden Schenkel den Kreis jeweils in genau einem (weiteren!) Punkt schneiden. --Gänseblümchen 09:42, 28. Jul. 2010 (UTC)