Sehnenvierecke und der Satz über die gegenüberliegenden Winkel im Sehnenviereck (WS10/11)
Inhaltsverzeichnis |
Begriff des Sehnenvierecks
Definition XVIII.1: (Kreissehne)
- Es sei ein Kreis. Die Strecke ist eine Sehne des Kreises und gilt --Engel82 13:02, 30. Jan. 2011 (UTC) .
- Es sei ein Kreis. Die Strecke ist eine Sehne des Kreises und gilt --Engel82 13:02, 30. Jan. 2011 (UTC) .
....--Jbo-sax 13:17, 30. Jan. 2011 (UTC)
Es sei ein Kreis. Eine Sehne des Kreises ist jede Strecke, deren Anfangs- und Endpunkte Element des Kreises sind.--TimoRR 10:49, 5. Feb. 2011 (UTC)
Definition XVIII.2: (die Durchmesser eines Kreises)
- Das können Sie selbst. Hinweis: Jeder Kreis hat unendlich viele Durchmesser.
Gegeben sei ein Kreis k und M der Mittelpunkt von k.
Eine Strecke ist dann ein Durchmesser des Kreises k, wenn , und die Verbindungsstrecke durch M verläuft.--Engel82 13:05, 30. Jan. 2011 (UTC)
Es sei ein Kreis. ist Mittelpunkt des Kreises . Die Strecke ist ein Durchmesser des Kreises und .--Jbo-sax 13:17, 30. Jan. 2011 (UTC)
Es sei ein Kreis mit dem Mittelpunkt . Ferner seien und zwei Punkte des Kreises . Ein Durchmesser ist die Strecke , für die gilt . --TimoRR 10:43, 5. Feb. 2011 (UTC)
Definition XVIII.3: (Radien eines Kreises)
- Das können Sie selbst. Hinweis: Jeder Kreis hat unendlich viele Radien.
Gegeben sei ein Kreis k und M der Mittelpunkt von k. Eine Strecke ist ein Radius des Kreises k, wenn
gilt--Engel82 13:12, 30. Jan. 2011 (UTC)
Es sei ein Kreis. ist Mittelpunkt des Kreises . Die Strecke ist ein Radius des Kreises und .--Jbo-sax 13:17, 30. Jan. 2011 (UTC)
Es sei ein Kreis mit dem Mittelpunkt . Jede Strecke, die den Anfangspunkt in und den Endpunkt in einem beliebigen Punkt des Kreises hat, nennt man Radius.--TimoRR 10:35, 5. Feb. 2011 (UTC)
Definition XVIII.4: (Sehnenviereck)
- Ein Viereck, dessen Seiten Sehnen ein und desselben Kreises sind, heißt Sehnenviereck.
- Ein Viereck, dessen Seiten Sehnen ein und desselben Kreises sind, heißt Sehnenviereck.
Ein Viereck ABCD, dessen Eckpunkte A, B, C, D Elemtent ein und desselben Kreises sind, nennt man Sehnenviereck.
Der Satz über die gegenüberliegenden Winkel im Sehnenviereck
Die Satzfindung
sehr speziell: Quadrate
Jedes Quadrat hat einen Umkreis und ist somit ein Sehnenviereck.
weniger speziell, aber immer noch ziemlich speziell: Rechtecke
Jedes Rechteck ist ein Sehnenviereck.
noch allgemeiner, aber immer noch ziemlich speziell: gleichschenklige Trapeze
Jedes gleichschenklige Trapez ist ein Sehnenviereck.
allgemeines Sehnenviereck
Ausgangslage: ist ein gleichschenkliges Trapez.
Arbeitsauftrag: Bewegen Sie den Punkt auf dem Kreis. Beobachten Sie, wie sich der rote und der blaue Winkel verändern. Was vermuten Sie bezüglich der Größe von ? Was vermuten Sie hinsichtlich der Größen der gegenüberliegenden Winkel im Sehnenviereck?
Der Satz über die gegenüberliegenden Winkel im Sehnenviereck