Verschiebungen 2010: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Satz: Jede Verschiebung ist eine Bewegung.)
(Satz: Jede Verschiebung ist eine Bewegung.)
Zeile 49: Zeile 49:
  
 
<br /><br />
 
<br /><br />
<br />Es sei <math>\ V</math> eine Verschiebung längs des Pfeiles <math>\overrightarrow{AB}</math> und <math>\ {P,Q}</math> zwei beliebige Punkte der Ebene mit ihren Bilden <math>\ {P',Q'}</math> bei <math>\ V</math>, die voneinander verschieden sind und nicht auf dem Pfeil <math>\overrightarrow{AB}</math> liegen.
+
<br />Es sei <math>\ V</math> eine Verschiebung längs des Pfeiles <math>\overrightarrow{AB}</math> und <math>\ {P,Q}</math> zwei beliebige Punkte der Ebene mit ihren Bildern <math>\ {P',Q'}</math> bei <math>\ V</math>, die voneinander verschieden sind und nicht auf dem Pfeil <math>\overrightarrow{AB}</math> liegen.
 
<br />
 
<br />
 
Wir haben zu zeigen, dass <math>\overline{PQ} \cong \overline {P'Q'}</math> ist. Es genügt natürlich zu zeigen, dass <math>\overline {PQQ'P'}</math> ein Parallelogramm ist, da in jedem Parllelogramm die gegenüberliegenden Seiten gleich lang sind.
 
Wir haben zu zeigen, dass <math>\overline{PQ} \cong \overline {P'Q'}</math> ist. Es genügt natürlich zu zeigen, dass <math>\overline {PQQ'P'}</math> ein Parallelogramm ist, da in jedem Parllelogramm die gegenüberliegenden Seiten gleich lang sind.

Version vom 17. November 2010, 15:56 Uhr

Inhaltsverzeichnis

Konstruktion des Bildes eines Punkte bei einer Verschiebung

Unter Verwendung der Vektorrechnung (Pfeilklassen)



"Konstruktionsvorschrift": P'=P+\overrightarrow{AB}



Konstruktionsbeschreibung

Gegeben sind ein Punkt \ D und sein Bildpunkt \ D', sowie ein Punkt \ P. Gesucht ist sein Bildpunkt \ P'bei der Verschiebung an \overrightarrow{DD'}

(1) Für den Fall, dass gilt: \ {D, D', P} sind nicht kollinear.

1. Parallele zu \overline{DD'} durch \ P
2. Parallele zu \overline{DP} durch \ D'
3. Der Schnittpunkt der beiden zuvor konstruierten Parallelen ist der gesuchte Punkt \ P'

(2) Für den Fall, dass gilt: \ {D, D', P} sind kollinear.

1. Konstruiere einen beliebigen Punkt \ Q der Ebene der nicht kollinear zu \ {D, D', P} ist.
2. Konstruiere den Bildpunkt \ Q' von \ Q bei der Verschiebung an \overrightarrow{DD'}, wie in (1) beschrieben.
3. Konstruiere nun den Bildpunkt \ P' von \ P bei der Verschiebung an \overrightarrow{QQ'} wie in (1) beschrieben. \ P' ist nun auch der gesuchte Bildpunkt für die Verschiebung an \overrightarrow{DD'}, da \overrightarrow{DD'} und \overrightarrow{QQ'} den gleichen Richtungssinn haben. --Steph85

Definition der Verschiebung

...

Eine andere Möglichkeit der Definition?

Es sei \vec{AB} ein Pfeil. Unter der Verschiebung längs des Pfeiles \vec{AB} vresteht man eine Abbildung der Ebene auf sich, mit folgenden Eigenschaften:
Für das Bild eines Punktes P, benannt mit P' muss gelten:
1.  |\ AB | = |\ PP'|
2.  \overline{AB} \|  \overline{PP'}
3. \vec{AB} und \vec{PP'} haben den selbern Richtungssinn
--Tja??? 17:23, 16. Nov. 2010 (UTC)

Sätze

Satz: Jede Verschiebung ist eine Bewegung.

An dieser Stelle wird nur der allgemeinste Fall bewiesen (siehe Skizze), da die Beweise der anderen Fälle laut Herr Gieding immer ähnlich ablaufen.




Es sei \ V eine Verschiebung längs des Pfeiles \overrightarrow{AB} und \ {P,Q} zwei beliebige Punkte der Ebene mit ihren Bildern \ {P',Q'} bei \ V, die voneinander verschieden sind und nicht auf dem Pfeil \overrightarrow{AB} liegen.
Wir haben zu zeigen, dass \overline{PQ} \cong \overline {P'Q'} ist. Es genügt natürlich zu zeigen, dass \overline {PQQ'P'} ein Parallelogramm ist, da in jedem Parllelogramm die gegenüberliegenden Seiten gleich lang sind.


--Steph85
Beweisschritt Begründung
1) \overline {PP'} \| \overline {QQ'} folgt unmittelbar aus der Definition der Verschiebung
2) \overline {ABPP'} ist ein Parallelogramm. folgt unmittelbar aus der Definition der Verschiebung ("Das Bild des Punktes \ P ist der fehlende Eckpunkt des Parallelogramms \overline {ABPP'} .")
3) \overline {ABQQ'} ist ein Parallelogramm. folgt unmittelbar aus der Definition der Verschiebung
4) Aus \overline {AB} \cong \overline {PP'} und \overline {AB} \cong \overline {QQ'} folgt \overline {PP'} \cong \overline {QQ'} (2), (3), Transitivität
5) \overline {PQQ'P'} ist ein Parallelogramm. (1), (4)