Übung Aufgaben 5
Inhaltsverzeichnis |
Aufgaben zu Sätzen, Beweisen und Relationen
Aufgabe 5.1
Satz: Gegeben sei ein Dreieck in einer Ebene E und eine Gerade g in dieser Ebene, die keine der drei Punkte A, B und C enthält.
Wenn g die Strecke schneidet, so schneidet sie auch entweder die Strecke oder die Strecke .
a) Wie lautet die Kontraposition dieser Implikation?
b) Wie lautet die Annahme, wenn Sie diese Implikation durch einen Widerspruch beweisen möchten?.
Lösung von Aufgabe 5.1
Aufgabe 5.2
Gegeben sei folgende Äquivalenz: Der Abstand zweier Punkte A und B ist genau dann 0, wenn A und B identisch sind.
a) Formulieren Sie die beiden Implikationen, die in dieser Aussage stecken.
b) Wie lautet jeweils die Kontraposition der beiden Implikationen?
c) Wie lauten die beiden Annahmen, wenn Sie diese Implikationen jeweils durch einen Widerspruch beweisen möchten?
Lösung von Aufgabe 5.2
Aufgabe 5.3
Entscheiden Sie für die folgenden Relationen, ob es sich um reflexive, symmetrische sowie transitive Relationen handelt?
- Parallelität von Geraden der Ebene
- Kongruenz geometrischer Figuren
- Teilbarkeit in
- Kleinerrelation in
- Größer-Gleich-Relation in
- Ungleichheit in
Aufgabe 5.4
In der Schule sprechen wir davon, dass wir Dreiecke
a) hinsichtlich der Seitenlängen oder
b) hinsichtlich der Winkelgrößen klassifizieren.
In welchen der beiden Fälle handelt es sich um eine wirkliche Klasseneinteilung? Argumentieren Sie mit Hilfe eines Venn-Diagramms.
Lösung von Aufgabe 5.4
Aufgabe 5.5
Gegeben sei eine Gerade g und ein Punkt P auf g. Durch diesen Punkt P wird die Gerade g in zwei Halbgeraden geteilt.
a) Warum ist diese Einteilung von g in die zwei Halbgeraden bezüglich P keine Klasseneinteilung auf der Menge der Punkte von g?
b) Geben Sie zwei Klasseneinteilungen auf der Menge der Punkte von g an, die den Punkt P und die auf g durch P bestimmten Halbgeraden in modifizierter Form verwenden.
Lösung von Aufgabe 5.5
Aufgabe 5.6
Es seien eine Ebene E (aufgefasst als Punktmenge) und eine Gerade g in E gegeben. Wir betrachten folgende Relation ( ist ein willkürlich gewähltes Symbol, um die Relation nicht mit dem unauffälligen Buchstaben R bezeichnen zu müssen) in der Menge (also alle Punkte der Ebene E, die nicht der Geraden g angehören): Für beliebige gilt: .
a) Beschreiben Sie die Relation verbal und veranschaulichen Sie diese Relation.
b) Begründen Sie anschaulich, dass eine Äquivalenzrelation ist. Formulieren Sie dazu die Eigenschaften von Äquivalenzrelationen konkret auf die Relation bezogen.
Hinweis: Sie können die Transitivität noch nicht exakt beweisen; in dieser Aufgabe geht es zunächst darum, die Relationseigenschaften als geometrische Eigenschaften zu interpretieren und zu verstehen.
Lösung von Aufgabe 5.6
Aufgabe 5.7
Es sei die Menge der Figuren der Ebene. Auf sei eine Äquivalenzrelation definiert. möge derart in Klassen einteilen, dass die folgenden Figuren in ein und derselben Klasse liegen:
Geben Sie mögliche Interpretationen der Relation an.
Lösung von Aufgabe 5.7