12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Definieren Sie den Begriff des gleichschenkligen Dreiecks. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.

Hinweis: Die Schenkel eine Winkels sind Strahlen. Die Schenkel eines gleichschenkligen Dreiecks sind Strecken.

Es sei \overline{ABC} ein Dreieck. Wenn zwei der drei Strecken von \overline{ABC} kongruent sind, ist \overline{ABC} ein gleichschenkliges Dreieck.
Diese zwei kongruenten Strecken sind die Schenkel von \overline{ABC}.
Die Winkel, die genau einen dieser Schenkel als Teilmenge entahlten, heißen Basiswinkel.

  • Diesen Satz sollte man noch etwas präzisieren. Kleiner Tipp: Welche Winkel "gibt" es, wenn man ein Dreieck betrachtet? --Tutor Andreas 11:38, 4. Jan. 2012 (CET)

Die Basis ist die Seite von \overline{ABC}, die als Teilmenge in beiden Basiswinkeln enthalten ist. --RicRic 12:17, 3. Jan. 2012 (CET)



- Es sei \angle ABC ein Winkel. Wenn A und C zu B jeweils ein und denselben Abstand haben, so ist das Dreieck \overline{ABC} ein gleichschenkliges Dreieck. Die Stecken \overline{AB} und \overline{BC} nennt man Schenkel von \overline{ABC}. Die Strecke \overline{AC} nennt man Basis von \overline{ABC}. Die Winkel bei A und C heißen Basiswinkel des Dreiecks \overline{ABC} und sind stumpfe Winkel.--LGDo12 14:41, 5. Jan. 2012 (CET)