Übung Aufgaben 6 (SoSe 14)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 6.1

Geben Sie eine formal korrekte Definition für die Halbgerade \ AB^- an, ohne die Zwischenrelation zu verwenden.

Lösung von Aufg. 6.1P (SoSe_14)


Aufgabe 6.2

Definieren Sie den Begriff: "konvexe Punktmenge" indem Sie die verbal formulierte Definition (siehe Wiki-Skript) in eine geeignete "Mengenschreibweise" übersetzen.
M ist konvex, wenn gilt: ...

Lösung von Aufg. 6.2P (SoSe_14)

Aufgabe 6.3

Beweisen Sie: Der Durchschnitt zweier konvexer Punktmengen ist konvex.

Lösung von Aufg. 6.3P (SoSe_14)

Aufgabe 6.4

a) Formulieren Sie die Kontraposition der Implikation aus Aufgabe 6.3.
b) Zeigen Sie mittels einer Skizze, dass die Umkehrung der Implikation aus Aufgabe 6.3 nicht wahr ist.

Lösung von Aufg. 6.4P (SoSe_14)

Aufgabe 6.5

a) Gegeben seien drei paarweise verschiedene und nichtkollineare Punkte A, B und C in einer Ebene E. Ferner sei eine Gerade g Teilmenge der Ebene E, wobei keiner der Punkte A, B und C auf g liegen möge. Beweisen Sie folgenden Zusammenhang:

\overline{AB}\cap g=\lbrace \rbrace \wedge \overline{BC}\cap g=\lbrace \rbrace\Rightarrow \overline{AC}\cap g=\lbrace \rbrace

b) Was hat Aufgabe 6.5 mit Aufgabe 5.4 zu tun?

Lösung von Aufg. 6.5P (SoSe_14)