Übung Aufgaben 6 (SoSe 12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgaben zum Abstand und zur Anordnung

Aufgabe 6.1

Definieren Sie: Strecke, Länge einer Strecke, die Halbgerade AB^+ und die Halbgerade AB^-. Suchen Sie verschiedene Schreibweisen. (Hilfe finden Sie im Skript "Abstand, Anordnung, Strecke".)

Lösung von Aufgabe 6.1_S (SoSe_12)

Aufgabe 6.2

Warum ist die folgende Aufgabenstellung sinnlos?
Beweisen Sie Axiom II.2: Für beliebige Punkte A und B gilt: \left| AB \right| = \left| BA \right|
Lösung von Aufgabe 6.2_S (SoSe_12)

Aufgabe 6.3

Beweisen Sie: Jede Strecke hat höchstens einen Mittelpunkt.
Lösung von Aufgabe 6.3_S (SoSe_12)

Aufgabe 5.2

Diese Aufgabe war letzte Woche noch zu schwer- sorry dafür. Versuchen Sie es diese Woche nochmal.
Zeigen Sie, dass für drei paarweise verschiedene Punkte \ A, B und \ C gilt:
\operatorname Zw (A, B, C) \Rightarrow \overline{AB}  	\subset \overline{AC}

Tipps zu Aufgabe 5.2 (SoSe_12)

Lösung von Aufgabe 5.2 (SoSe_12)

Aufgabe 5.4

Wie bei 5.2: Versuchen Sie es diese Woche nochmal.
Beweisen Sie: Zu jeder Strecke \overline{AB} existiert genau eine Strecke \overline{AC} auf \ AB^{+} mit \left| AB \right| = \frac{1}{4} \left| AC \right| und \overline{AB}  	\subset \overline{AC}
Tipps zu Aufgabe 5.4 (SoSe_12)

Lösung von Aufgabe 5.4 (SoSe_12)

Aufgabe zur Inzidenz

Zusatzaufgabe 6.1

Es sei \ g eine Gerade und \ P ein Punkt, der nicht zu \ g gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene \ \epsilon, die sowohl alle Punkte von \ g als auch den Punkt \ P enthält.

Lösung von Zusatzaufgabe 6.1_S (SoSe_12)

Aufgaben zum Abstand und zur Anordnung

Zusatzaufgabe 6.2

Im Skript steht als Beweis "trivial". Führen Sie die Beweise trotzdem mal durch. Gehen Sie kleinschrittig und gut begründet vor.
Beweisen Sie:
a) \operatorname Zw (A, B, C) \Rightarrow \operatorname Zw (C, B, A)
b) \operatorname Zw (A, B, C) \Rightarrow \operatorname koll (A, B, C)

Lösung von Zusatzaufgabe 6.2_S (SoSe_12)

Zusatzaufgabe 6.3

a) Definieren Sie windschief auf der Menge aller Geraden (d.h.im Raum) auf zwei verschiedene Arten.
b) Warum ist die folgende Definition sinnlos?

Zwei Ebenen sind windschief, wenn sie sich nicht schneiden und sie nicht parallel zueinander sind.

Lösung von Zusatzaufgabe 6.3_S (SoSe_12)