Übung Aufgaben 7 (WS 11/12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgaben zur Inzidenz

Aufgabe 7.1

Beweisen Sie: Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.

Lösung von Aufg. 7.1 (WS_11/12)

Aufgabe 7.2

Es sei \ g eine Gerade und \ P ein Punkt, der nicht zu \ g gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene \ \epsilon, die sowohl alle Punkte von \ g als auch den Punkt \ P enthält.

Lösung von Aufg. 7.2 (WS_11/12)

Aufgabe 7.3

Beweisen Sie: Je vier nicht komplanare Punkte sind paarweise verschieden (Hinweis: Nutzen Sie bei der Beweisführung den Satz aus Aufgabe 6.6).

Lösung von Aufg. 7.3 (WS_11/12)

Aufgabe 7.4

Das Axiom I.7 sagt aus:

Es gibt vier Punkte, die nicht komplanar sind.

Es sei \ \epsilon eine beliebige Ebene und \ A, B, C, D die vier Punkte entsprechend Axiom I.7. Klassifizieren Sie alle Fälle die bezüglich der Inzidenz der Punkte \ A, B, C, D mit \ \epsilon auftreten können.

Lösung von Aufg. 7.4 (WS_11/12)


Aufgaben zum Abstand

Aufgabe 7.5

Satz:

Von drei paarweise verschiedenen Punkten \ A, B und \ C ein und derselben Geraden \ g liegt genau einer zwischen den beiden anderen.

Beweisen Sie diesen Satz.

Lösung von Aufg. 7.5 (WS_11/12)

Aufgabe 7.6

Eine informelle Definition:

Definition: Halbgerade AB^+

Gegeben seien zwei verschiedene Punkte \ A und \ B. Unter dem Strahl bzw. der Halbgeraden \ AB^+ versteht man die Strecke \overline{AB} vereinigt mit der Menge aller der Punkte, die man erhält, wenn man \overline{AB} über \ B hinaus verlängert.

Formulieren Sie eine mathematisch korrekte Definition des Begriffs Halbgerade \ AB^+.

Lösung von Aufg. 7.6 (WS_11/12)

Aufgabe 7.7

Definition: Halbgerade AB^-

Gegeben seien zwei nicht identische Punkte \ A und \ B. Unter \ AB^- wollen wir die Menge aller Punkte \ P verstehen, die man erhält, wenn man \overline{AB} über \ A hinaus verlängert.

Geben Sie eine mathematisch korrekte Definition für die Menge dieser Punkte \ P an.

Lösung von Aufg. 7.7 (WS_11/12)